A. D. Redish, S. Jensen, and A. Johnson, A unified framework for addiction: vulnerabilities in the decision process, Behav Brain Sci, vol.31, issue.4, pp.415-437, 2008.

W. Renthal and E. J. Nestler, Epigenetic mechanisms in drug addiction, Trends Mol Med, vol.14, issue.8, pp.341-350, 2008.

S. P. Rigonatti, P. S. Boggio, M. L. Myczkowski, E. Otta, J. T. Fiquer et al., , 2008.

C. Rivier, Alcohol stimulates ACTH secretion in the rat: mechanisms of action and interactions with other stimuli, Alcohol Clin Exp Res, vol.20, issue.2, pp.240-254, 1996.

E. T. Rolls, The neural basis of brain-stimulation reward, Prog Neurobiol, vol.3, p.73, 1975.

T. Rouaud, S. Lardeux, N. Panayotis, D. Paleressompoulle, M. Cador et al., , 2010.

, Proc Natl Acad Sci U S A, vol.107, issue.3, pp.1196-1200

S. J. Russo and E. J. Nestler, The brain reward circuitry in mood disorders, Nat Rev Neurosci, vol.14, issue.9, pp.609-625, 2013.

D. Saal, Y. Dong, A. Bonci, and R. C. Malenka, Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons, Neuron, vol.37, issue.4, pp.577-582, 2003.

D. J. Safer, J. M. Zito, and S. Dosreis, Concomitant psychotropic medication for youths, Am J Psychiatry, vol.160, issue.3, pp.438-449, 2003.

A. Sahay and R. Hen, Adult hippocampal neurogenesis in depression, Nature neuroscience, vol.10, issue.9, pp.1110-1115, 2007.

A. Sauvaget, B. Trojak, S. Bulteau, S. Jimenez-murcia, F. Fernandez-aranda et al., Transcranial direct current stimulation (tDCS) in behavioral and food addiction: a systematic review of efficacy, technical, and methodological issues, Front Neurosci, vol.9, p.349, 2015.

M. A. Schuckit, E. Gold, and C. Risch, Plasma cortisol levels following ethanol in sons of alcoholics and controls, Arch Gen Psychiatry, vol.44, issue.11, pp.942-945, 1987.

M. A. Schuckit, S. C. Risch, and E. O. Gold, Alcohol consumption, ACTH level, and family history of alcoholism, Am J Psychiatry, vol.145, issue.11, pp.1391-1395, 1988.

M. A. Schuckit and T. L. Smith, , 2000.

W. Schultz, Predictive reward signal of dopamine neurons, J Neurophysiol, vol.80, issue.1, pp.1-27, 1998.

W. Schultz, Behavioral theories and the neurophysiology of reward, Annu Rev Psychol, vol.57, pp.87-115, 2006.

W. Schultz, P. Dayan, and P. R. Montague, A neural substrate of prediction and reward, Science, vol.275, issue.5306, pp.1593-1599, 1997.

W. Schultz and A. Dickinson, Neuronal coding of prediction errors, Annu Rev Neurosci, vol.23, pp.473-500, 2000.

J. J. Song, S. Vanneste, P. Van-de-heyning, D. Ridder, and D. , Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis, ScientificWorldJournal, p.427941, 2012.

R. Sparing, M. Thimm, M. D. Hesse, J. Kust, H. Karbe et al., Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation, Brain, vol.132, pp.3011-3020, 2009.

L. P. Spear, The adolescent brain and age-related behavioral manifestations, Neurosci Biobehav Rev, vol.24, issue.4, pp.417-463, 2000.

L. P. Spear, Adolescents and alcohol: acute sensitivities, enhanced intake, and later consequences, Neurotoxicol Teratol, vol.41, pp.51-59, 2014.

C. J. Stagg and M. A. Nitsche, , 2011.

C. C. Bailey and I. Kitchen, Developmental responses to opioids reveals a lack of effect on stress-induced corticosterone levels in neonatal rats, Br. J. Pharmacol, vol.91, pp.119-125, 1987.

A. Barbazanges, P. V. Piazza, M. Le-moal, and S. Maccari, Maternal glucocorticoid secretion mediates long-term effects of prenatal stress, 1996.

, J. Neurosci, vol.16, pp.3943-3949

K. T. Brady and S. C. Sonne, The role of stress in alcohol use, alcoholism treatment, and relapse, Alcohol Res. Health, vol.23, pp.263-271, 1999.

T. Chung, C. S. Martin, and K. C. Winters, Diagnosis, course, and assessment of alcohol abuse and dependence in adolescents, Recent Dev. Alcohol, vol.17, pp.5-27, 2005.

F. T. Crews, A. Mdzinarishvili, D. Kim, J. He, and K. Nixon, Neurogenesis in adolescent brain is potently inhibited by ethanol, Neuroscience, vol.137, pp.437-445, 2006.

J. M. Deminiere, P. V. Piazza, G. Guegan, N. Abrous, S. Maccari et al., Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers, Brain Res, vol.586, pp.135-139, 1992.

V. Deroche, P. V. Piazza, J. M. Deminiere, M. Le-moal, and H. Simon, Rats orally self-administer corticosterone, Brain Res, vol.622, pp.315-320, 1993.

T. L. Doremus, S. C. Brunell, P. Rajendran, and L. P. Spear, Factors influencing elevated ethanol consumption in adolescent relative to adult rats, Alcohol Clin. Exp. Res, vol.29, pp.1796-1808, 2005.

K. H. Deturck and L. A. Pohorecky, Ethanol sensitivity in rats: effect of prenatal stress, Physiol. Behav, vol.40, pp.407-410, 1987.

M. H. Emmert and J. P. Herman, Differential forebrain c-fos mRNA induction by ether inhalation and novelty: evidence for distinctive stress pathways, Brain Res, vol.845, pp.60-67, 1999.

C. Fahlke and S. Hansen, Effect of local intracerebral corticosterone implants on alcohol intake in the rat, Alcohol Alcohol, vol.34, pp.851-861, 1999.

C. Fahlke and C. J. Eriksson, Effect of adrenalectomy and exposure to corticosterone on alcohol intake in alcohol-preferring and alcohol-avoiding rat lines, Alcohol Alcohol, vol.35, pp.139-144, 2000.

C. Henry, M. Kabbaj, H. Simon, M. Le-moal, and S. Maccari, Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats, J. Neuroendocrinol, vol.6, pp.341-345, 1994.

C. Henry, G. Guegant, M. Cador, E. Arnauld, J. Arsaut et al., Prenatal stress in rats facilitates amphetamineinduced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens, Brain Res, vol.685, pp.179-186, 1995.

J. P. Herman, H. Figueiredo, N. K. Mueller, Y. Ulrich-lai, M. M. Ostrander et al., Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness, Front. Neuroendocrinol, vol.24, pp.151-180, 2003.

K. M. Ogilvie, S. Lee, and C. Rivier, Divergence in the expression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes, J. Neurosci, vol.18, pp.4344-4352, 1998.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

T. J. Phillips, A. J. Roberts, and C. N. Lessov, Behavioral sensitization to ethanol: genetics and the effects of stress, Pharmacol. Biochem. Behav, vol.57, pp.487-493, 1997.

P. V. Piazza, S. Maccari, J. M. Deminiere, M. Le-moal, P. Mormede et al., Corticosterone levels determine individual vulnerability to amphetamine self-administration, Proc. Natl Acad. Sci. U.S.A, vol.88, pp.2088-2092, 1991.

P. V. Piazza, V. Deroche, J. M. Deminiere, S. Maccari, M. Le-moal et al., Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors, Proc. Natl Acad. Sci. U.S.A, vol.90, pp.738-749, 1993.

S. Rassnick, L. Stinus, and G. F. Koob, The effects of 6-hydroxydopamine lesions of the nucleus accumbens and the mesolimbic dopamine system on oral self-administration of ethanol in the rat, Brain Res, vol.623, pp.16-24, 1993.

E. Redei, B. J. Branch, S. Gholami, E. Y. Lin, and A. N. Taylor, Effects of ethanol on CRF release in vitro, Endocrinology, vol.123, pp.2736-2743, 1988.

C. Rivier and S. Lee, Acute alcohol administration stimulates the activity of hypothalamic neurons that express corticotropin-releasing factor and vasopressin, Brain Res, vol.726, pp.1-10, 1996.

D. C. Roberts and G. F. Koob, Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats, Pharmacol. Biochem. Behav, vol.17, pp.901-904, 1982.

A. E. Ryabinin, K. R. Melia, M. Cole, F. E. Bloom, and M. C. Wilson, Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus, J. Neurosci, vol.15, pp.721-730, 1995.

T. Saranteas, C. Tesseromatis, A. Potamianou, C. Mourouzis, and D. Varonos, Stress-induced lidocaine modification in serum and tissues, Eur. J. Drug Metab. Pharmacokinet, vol.27, pp.229-232, 2002.

M. A. Schuckit, E. Gold, and C. Risch, Plasma cortisol levels following ethanol in sons of alcoholics and controls, Arch. Gen. Psychiat, vol.44, pp.942-945, 1987.

M. A. Schuckit, S. C. Risch, and E. O. Gold, Alcohol consumption, ACTH level, and family history of alcoholism, Am. J. Psychiat, vol.145, pp.1391-1395, 1988.

M. M. Silveri and L. P. Spear, Characterizing the ontogeny of ethanolassociated increases in corticosterone, Alcohol, vol.32, pp.145-155, 2004.

R. F. Smith, Animal models of periadolescent substance abuse, Neurotoxicol. Teratol, vol.25, pp.291-301, 2003.

J. W. Smith, J. R. Seckl, A. T. Evans, B. Costall, and J. W. Smythe, Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats, Psychoneuroendocrinology, vol.29, pp.227-244, 2004.

M. Vallee, S. Maccari, F. Dellu, H. Simon, M. Le-moal et al., Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat, Eur. J. Neurosci, vol.11, pp.2906-2916, 1999.

J. Weinberg, Effects of early experience on responsiveness to ethanol: a preliminary report, Physiol. Behav, vol.40, pp.401-406, 1987.

D. Balschun, W. Zuschratter, and W. Wetzel, Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory, Neuroscience, vol.142, pp.691-702, 2006.

D. Beracochea, J. Micheau, and R. Jaffard, Memory deficits following chronic alcohol consumption in mice: relationships with hippocampal and cortical cholinergic activities, Pharmacol Biochem Behav, vol.42, pp.749-753, 1992.

T. Cargiulo, Understanding the health impact of alcohol dependence, Am J Health Syst Pharm, vol.64, pp.5-11, 2007.

F. A. Champagne and M. J. Meaney, Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model, Biol Psychiatry, vol.59, pp.1227-1235, 2006.

C. L. Coe, M. Kramer, B. Czeh, E. Gould, A. J. Reeves et al., Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys, Biol Psychiatry, vol.54, pp.1025-1034, 2003.

C. D. Conrad, L. A. Galea, Y. Kuroda, and B. S. Mcewen, Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment, Behav Neurosci, vol.110, pp.1321-1334, 1996.

M. Darnaudery, H. Louvart, L. Defrance, M. Leonhardt, S. Morley-fletcher et al., Impact of an intense stress on ethanol consumption in female rats characterized by their prestress preference: Modulation by prenatal stress, References Adriani, vol.1131, pp.1946-1956, 2006.

W. Adriani, D. Leo, M. Guarino, A. Natoli, E. Di-consiglio et al., Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual ? endocrine parameters in male rats, Ann. N Y Acad. Sci, vol.1074, pp.52-73, 2006.

S. L. Andersen, Stimulants and the developing brain, Trends Pharmacol. Sci, vol.26, pp.237-243, 2005.

A. Badiani, M. M. Oates, H. E. Day, S. J. Watson, H. Akil et al., Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty, J. Neurosci, vol.18, pp.10579-10593, 1998.

A. Balcioglu and R. J. Wurtman, Dexfenfluramine enhances striatal dopamine release in conscious rats via a serotoninergic mechanism, 1998.

, J. Pharmacol. Exp. Ther, vol.284, pp.991-997

S. Benloucif and M. P. Galloway, Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis, Eur. J. Pharmacol, vol.200, pp.1-8, 1991.

S. Benloucif, M. J. Keegan, and M. P. Galloway, Serotonin-facilitated dopamine release in vivo: pharmacological characterization, J. Pharmacol. Exp. Ther, vol.265, pp.373-377, 1993.

J. D. Berke and S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, vol.25, pp.515-532, 2000.

R. V. Bhat and J. M. Baraban, Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems, 1993.

, J. Pharmacol. Exp. Ther, vol.267, pp.496-505

V. Bhatara, M. Feil, K. Hoagwood, B. Vitiello, and B. Zima, National trends in concomitant psychotropic medication with stimulants in pediatric visits: practice versus knowledge, J. Atten. Disord, vol.7, pp.217-226, 2004.

K. E. Bogle and B. H. Smith, Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences, Curr. Drug Abuse Rev, vol.2, pp.157-176, 2009.

J. Borycz, A. Zapata, C. Quiroz, N. D. Volkow, and S. Ferré, (1B) receptor-mediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats, Neuropsychopharmacology, vol.33, pp.619-626, 2008.

C. L. Brandon and H. Steiner, Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum, Eur. J. Neurosci, vol.18, pp.1584-1592, 2003.

C. L. Brandon, M. Marinelli, L. K. Baker, and F. J. White, Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats, Neuropsychopharmacology, vol.25, pp.651-661, 2001.

M. J. Bubar and K. A. Cunningham, Prospects for serotonin 5-HT2R pharmacotherapy in psychostimulant abuse, Prog. Brain Res, vol.172, pp.319-346, 2008.

M. J. Bubar, L. R. Mcmahon, P. De-deurwaerdère, U. Spampinato, and K. A. Cunningham, Selective serotonin reuptake inhibitors enhance cocaine-induced locomotor activity and dopamine release in the nucleus accumbens, Neuropharmacology, vol.44, pp.342-353, 2003.

W. A. Carlezon and C. Konradi, Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules, Neuropharmacology, vol.47, pp.47-60, 2004.

N. Castanon, K. Scearce-levie, J. J. Lucas, B. Rocha, and R. Hen, Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists, Pharmacol. Biochem. Behav, vol.67, pp.559-566, 2000.

T. D. Chase, R. E. Brown, N. Carrey, and M. Wilkinson, Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats, Neuroreport, vol.14, pp.769-772, 2003.

L. Cotterly, J. A. Beverley, M. Yano, and H. Steiner, Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate SSRIs potentiate IEG induction by Ritalin 445, 2007.

T. Authors, Journal Compilation ª Federation of European Neuroscience Societies and Blackwell Publishing Ltd, European Journal of Neuroscience, vol.32, pp.3617-3628, 2010.

A. Csoka, A. Bahrick, and O. P. Mehtonen, Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors, J. Sex. Med, vol.5, pp.227-233, 2008.

E. H. Ellinwood and R. L. Balster, Rating the behavioral effects of amphetamine, Eur. J. Pharmacol, vol.28, pp.35-41, 1974.

B. J. Everitt and T. W. Robbins, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion, Nat. Neurosci, vol.8, pp.1481-1489, 2005.

R. A. Fuchs, R. K. Branham, and R. E. See, Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen, J. Neurosci, vol.26, pp.3584-3588, 2006.

A. M. Gardier, R. Moratalla, B. Cuellar, M. Sacerdote, B. Guibert et al., Interaction between the serotoninergic and dopaminergic systems in d-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons, J. Neurochem, vol.74, pp.1363-1373, 2000.

A. M. Graybiel, Building action repertoires: memory and learning functions of the basal ganglia, Curr. Opin. Neurobiol, vol.5, pp.733-741, 1995.

A. M. Graybiel, J. J. Canales, and C. Capper-loup, Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis, Trends Neurosci, vol.23, pp.71-77, 2000.

H. Greely, B. Sahakian, J. Harris, R. C. Kessler, M. Gazzaniga et al., Towards responsible use of cognitive-enhancing drugs by the healthy, Nature, vol.456, pp.702-705, 2008.

M. J. Guerra, I. Liste, and J. L. Labandeira-garcia, Interaction between the serotonergic, dopaminergic, and glutamatergic systems in fenfluramineinduced Fos expression in striatal neurons, Synapse, vol.28, pp.71-82, 1998.

K. A. Horner, D. H. Adams, G. R. Hanson, and K. A. Keefe, Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion, Neuroscience, vol.131, pp.67-77, 2005.

S. E. Hyman and E. J. Nestler, Initiation and adaptation: a paradigm for understanding psychotropic drug action, Am. J. Psychiatry, vol.153, pp.151-162, 1996.

M. Ishii, Y. Tatsuzawa, A. Yoshino, and S. Nomura, Serotonin syndrome induced by augmentation of SSRI with methylphenidate, Psychiatry Clin. Neurosci, vol.62, p.246, 2008.

K. A. Keefe and K. A. Horner, Neurotransmitter regulation of basal ganglia gene expression, pp.461-490, 2010.

S. H. Kollins, ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines, J. Atten. Disord, vol.12, pp.115-125, 2008.

S. H. Kollins, E. K. Macdonald, and C. R. Rush, Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review, Pharmacol. Biochem. Behav, vol.68, pp.611-627, 2001.

R. Kuczenski and D. S. Segal, Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine, 1997.

, J. Neurochem, vol.68, pp.2032-2037

H. Lavretsky, M. D. Kim, A. Kumar, and C. F. Reynolds, Combined treatment with methylphenidate and citalopram for accelerated response in the elderly: an open trial, J. Clin. Psychiatry, vol.64, pp.1410-1414, 2003.

L. Nedelec, M. J. Rosengren, and R. J. , Methylphenidate inhibits cytochrome P450 in the Swiss Webster mouse, Hum. Exp. Toxicol, vol.21, pp.273-280, 2002.

J. S. Lin, Y. Hou, and M. Jouvet, Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat, Proc. Natl Acad. Sci. USA, vol.93, pp.14128-14133, 1996.

J. J. Lucas, L. Segu, and R. Hen, 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B ? 1D antagonist GR127935, Mol. Pharmacol, vol.51, pp.755-763, 1997.

J. W. Mink, The basal ganglia: focused selection and inhibition of competing motor programs, Prog. Neurobiol, vol.50, pp.381-425, 1996.

C. P. Muller and J. P. Huston, Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine, Trends Pharmacol. Sci, vol.27, pp.105-112, 2006.

J. C. Nelson, Augmentation strategies in the treatment of major depressive disorder. Recent findings and current status of augmentation strategies, CNS Spectr, vol.12, pp.6-9, 2007.

E. J. Nestler, Molecular basis of long-term plasticity underlying addiction, Nat. Rev. Neurosci, vol.2, pp.119-128, 2001.

M. G. Packard and B. J. Knowlton, Learning and memory functions of the basal ganglia, Annu. Rev. Neurosci, vol.25, pp.563-593, 2002.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

A. Randrup and I. Munkvad, Stereotyped activities produced by amphetamine in several animal species and man, Psychopharmacologia, vol.11, pp.300-310, 1967.

A. V. Ravindran, S. H. Kennedy, M. C. O'donovan, A. Fallu, F. Camacho et al., Osmotic-release oral system methylphenidate augmentation of antidepressant monotherapy in major depressive disorder: results of a double-blind, randomized, placebo-controlled trial, J. Clin. Psychiatry, vol.69, pp.87-94, 2008.

P. Redgrave and K. Gurney, The short-latency dopamine signal: a role in discovering novel actions?, Nat. Rev. Neurosci, vol.7, pp.967-975, 2006.

P. Redgrave, T. J. Prescott, and K. Gurney, The basal ganglia: a vertebrate solution to the selection problem?, Neuroscience, vol.89, pp.1009-1023, 1999.

D. J. Safer, J. M. Zito, and S. Dosreis, Concomitant psychotropic medication for youths, Am. J. Psychiatry, vol.160, pp.438-449, 2003.

N. B. Sandson, S. C. Armstrong, and K. L. Cozza, An overview of psychotropic drug-drug interactions, Psychosomatics, vol.46, pp.464-494, 2005.

R. E. See, J. C. Elliott, and M. W. Feltenstein, The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats, Psychopharmacology, vol.194, pp.321-331, 2007.

H. Steiner, Psychostimulant-induced gene regulation in corticostriatal circuits, pp.501-525, 2010.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Exp. Brain Res, vol.123, pp.60-76, 1998.

H. Steiner and S. T. Kitai, Regulation of rat cortex function by D1 dopamine receptors in the striatum, J. Neurosci, vol.20, pp.5449-5460, 2000.

H. Steiner, V. Van-waes, and M. Marinelli, Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use of cognitive enhancers?, Biol. Psychiatry, vol.67, pp.592-594, 2010.

Z. Sun, D. J. Murry, S. P. Sanghani, W. I. Davis, N. Y. Kedishvili et al., Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1, J. Pharmacol. Exp. Ther, vol.310, pp.469-476, 2004.

J. M. Swanson, N. D. Volkow, G. Torres, and C. Rivier, Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists, Brain Res. Bull, vol.453, pp.173-176, 1993.

C. T. Unal, J. A. Beverley, I. Willuhn, and H. Steiner, Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a, Eur. J. Neurosci, vol.29, pp.1615-1626, 2009.

J. M. Uslaner, H. S. Crombag, S. M. Ferguson, and T. E. Robinson, Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment, Eur. J. Neurosci, vol.17, pp.2180-2186, 2003.

L. J. Vanderschuren, P. Di-ciano, and B. J. Everitt, Involvement of the dorsal striatum in cue-controlled cocaine seeking, J. Neurosci, vol.25, pp.8665-8670, 2005.

J. Q. Wang and J. F. Mcginty, Glutamatergic and cholinergic regulation of immediate-early gene and neuropeptide gene expression in the striatum, CRC, pp.81-113, 1996.

P. Weikop, T. Yoshitake, and J. Kehr, Differential effects of adjunctive methylphenidate and citalopram on extracellular levels of serotonin, noradrenaline and dopamine in the rat brain, Eur. Neuropsychopharmacol, vol.17, pp.658-671, 2007.

T. E. Wilens, L. A. Adler, J. Adams, S. Sgambati, J. Rotrosen et al., Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature, J. Am. Acad. Child Adolesc. Psychiatry, vol.47, pp.21-31, 2008.

I. Willuhn, W. Sun, and H. Steiner, Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context, Eur. J. Neurosci, vol.17, pp.1053-1066, 2003.

D. Wirtshafter and D. F. Cook, Serotonin-1B agonists induce compartmentally organized striatal Fos expression in rats, Neuroreport, vol.9, pp.1217-1221, 1998.

, 61 1.1. Medical and nonprescription uses of psychostimulants

. .. , Molecular effects of repeated amphetamine and cocaine exposure, Relationship between gene regulation in striatum and cortex

, Progress in Neurobiology, vol.100, pp.60-80, 2013.

. .. Blunted-gene-inducibility, Alternative splicing: accumulation of deltaFosB

.. .. Adderall,

. .. , Relationship between gene regulation in striatum and cortex

, Drug interactions: SSRI antidepressants potentiate methylphenidate-induced gene regulation

. .. Acknowledgements, G. R. Hanson, and K. A. Keefe, Neuroscience, vol.102, pp.843-851, 2001.

D. H. Adams, G. R. Hanson, and K. A. Keefe, Distinct effects of methamphetamine and cocaine on preprodynorphin messenger RNA in rat striatal patch and matrix, Journal of Neurochemistry, vol.84, pp.87-93, 2003.

W. Adriani, D. Leo, D. Greco, M. Rea, U. Di-porzio et al., Methylphenidate administration to adolescent rats determines plastic changes in reward-related behavior and striatal gene expression, Neuropsychopharmacology, vol.31, pp.1946-1956, 2006.

W. Adriani, D. Leo, M. Guarino, A. Natoli, E. Di-consiglio et al., Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual/ endocrine parameters in male rats, Annals of the New York Academy of Sciences, vol.1074, pp.52-73, 2006.

R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends in Neurosciences, vol.12, pp.366-375, 1989.

M. E. Alburges, A. J. Hoonakker, K. A. Horner, A. E. Fleckenstein, and G. R. Hanson, Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment, Journal of Neurochemistry, vol.117, pp.470-478, 2011.

G. E. Alexander, M. D. Crutcher, and M. R. Delong, Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ''prefrontal'' and ''limbic'' functions, Progress in Brain Research, vol.85, pp.119-146, 1990.

G. E. Alexander, M. R. Delong, and P. L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annual Review of Neuroscience, vol.9, pp.357-381, 1986.

J. K. Allen, M. Wilkinson, E. C. Soo, J. P. Hui, T. D. Chase et al., Chronic low dose Adderall XR down-regulates cfos expression in infantile and prepubertal rat striatum and cortex, Neuroscience, vol.169, pp.1901-1912, 2010.

S. L. Andersen, Stimulants and the developing brain, Trends in Pharmacological Sciences, vol.26, pp.237-243, 2005.

S. L. Andersen, A. Arvanitogiannis, A. M. Pliakas, C. Leblanc, and W. A. Carlezon, Altered responsiveness to cocaine in rats exposed to methylphenidate during development, Nature Neuroscience, vol.5, pp.13-14, 2002.

M. Andersson, A. Hilbertson, and M. A. Cenci, Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease, Neurobiology of Disease, vol.6, pp.461-474, 1999.

M. Andersson, J. E. Westin, and M. A. Cenci, Time course of striatal deltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment, European Journal of Neuroscience, vol.17, pp.661-666, 2003.

Q. Babcock and T. Byrne, Student perceptions of methylphenidate abuse at a public liberal arts college, Journal of American College Health, vol.49, pp.143-145, 2000.

A. Badiani, M. M. Oates, H. E. Day, S. J. Watson, H. Akil et al., Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty, Journal of Neuroscience, vol.18, pp.10579-10593, 1998.

A. Badiani, M. M. Oates, H. E. Day, S. J. Watson, H. Akil et al., Environmental modulation of amphetamine-induced c-fos expression in D 1 versus D 2 striatal neurons, Behavioural Brain Research, vol.103, pp.203-209, 1999.

P. S. Banerjee, J. Aston, A. A. Khundakar, and T. S. Zetterströ-m, Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene Arc in the juvenile and adult brain, European Journal of Neuroscience, vol.29, pp.465-476, 2009.

R. A. Barkley, M. Fischer, L. Smallish, and K. Fletcher, Does the treatment of attention-deficit/hyperactivity disorder with stimulants contribute to drug use/ abuse? A 13-year prospective study, Pediatrics, vol.111, pp.97-109, 2003.

S. P. Barrett, C. Darredeau, L. E. Bordy, and R. O. Pihl, Characteristics of methylphenidate misuse in a university student sample, Canadian Journal of Psychiatry, vol.51, pp.126-127, 2005.

D. Belin and B. J. Everitt, Drug addiction: the neural and psychological basis of a compulsive incentive habit, Handbook of Basal Ganglia Structure and Function, pp.571-592, 2010.

H. W. Berendse, Y. Galis-de-graaf, and H. J. Groenewegen, Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat, Journal of Comparative Neurology, vol.316, pp.314-347, 1992.

J. D. Berke and S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, vol.25, pp.515-532, 2000.

J. D. Berke, R. F. Paletzki, G. J. Aronson, S. E. Hyman, and C. R. Gerfen, A complex program of striatal gene expression induced by dopaminergic stimulation, Journal of Neuroscience, vol.18, pp.5301-5310, 1998.

M. L. Berlanga, C. M. Olsen, V. Chen, A. Ikegami, B. E. Herring et al., Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine, Neuroscience, vol.120, pp.1149-1156, 2003.

S. M. Berman, R. Kuczenski, J. T. Mccracken, and E. D. London, Potential adverse effects of amphetamine treatment on brain and behavior: a review, Molecular Psychiatry, vol.14, pp.123-142, 2009.

S. Berretta, H. A. Robertson, and A. M. Graybiel, Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum, Journal of Neurophysiology, vol.68, pp.767-777, 1992.

C. W. Berridge and D. M. Devilbiss, Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder, Biological Psychiatry, vol.69, pp.101-111, 2011.

C. W. Berridge, D. M. Devilbiss, M. E. Andrzejewski, A. F. Arnsten, A. E. Kelley et al., Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function, Biological Psychiatry, vol.60, pp.1111-1120, 2006.

T. J. Beveridge, H. R. Smith, J. B. Daunais, M. A. Nader, and L. J. Porrino, Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates, European Journal of Neuroscience, vol.23, pp.3109-3118, 2006.

R. V. Bhat and J. M. Baraban, Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems, Journal of Pharmacology and Experimental Therapeutics, vol.267, pp.496-505, 1993.

V. Bhatara, M. Feil, K. Hoagwood, B. Vitiello, and B. Zima, National trends in concomitant psychotropic medication with stimulants in pediatric visits: practice versus knowledge, Journal of Attention Disorders, vol.7, pp.217-226, 2004.

J. Biederman, T. E. Wilens, T. J. Spencer, and L. A. Adler, Diagnosis and treatment of adults with attention-deficit/hyperactivity disorder, CNS Spectrums, vol.12, pp.1-15, 2007.

Y. D. Black, F. R. Maclaren, A. V. Naydenov, W. A. Carlezon, M. G. Baxter et al., Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence, Journal of Neuroscience, vol.26, pp.9656-9665, 2006.

C. A. Bolanos, M. Barrot, O. Berton, D. Wallace-black, and E. J. Nestler, Methylphenidate treatment during pre-and periadolescence alters behavioral responses to emotional stimuli at adulthood, Biological Psychiatry, vol.54, pp.1317-1329, 2003.

J. Borycz, A. Zapata, C. Quiroz, N. D. Volkow, and S. Ferré, 5-HT(1B) receptormediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats, Neuropsychopharmacology, vol.33, pp.619-626, 2008.

K. T. Brady, K. M. Gray, and B. K. Tolliver, Cognitive enhancers in the treatment of substance use disorders: clinical evidence, Pharmacology Biochemistry and Behavior, vol.99, pp.285-294, 2011.

C. L. Brandon, M. Marinelli, L. K. Baker, and F. J. White, Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats, Neuropsychopharmacology, vol.25, pp.651-661, 2001.

C. L. Brandon and H. Steiner, Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum, European Journal of Neuroscience, vol.18, pp.1584-1592, 2003.

H. C. Breiter, R. L. Gollub, R. M. Weisskoff, D. N. Kennedy, N. Makris et al., Acute effects of cocaine on human brain activity and emotion, Neuron, vol.19, pp.591-611, 1997.

J. S. Brog, A. Salyapongse, A. Y. Deutch, and D. S. Zahm, The patterns of afferent innervation of the core and shell in the ''accumbens'' part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluorogold, Journal of Comparative Neurology, vol.338, pp.255-278, 1993.

S. E. Bronson and C. Konradi, Second-messenger cascades, Handbook of Basal Ganglia Structure and Function, pp.447-460, 2010.

E. R. Butelman, V. Yuferov, and M. J. Kreek, 2012. k-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction, Trends in Neurosciences, vol.35, pp.587-596

F. P. Bymaster, J. S. Katner, D. L. Nelson, S. K. Hemrick-luecke, P. G. Threlkeld et al., Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder, Neuropsychopharmacology, vol.27, pp.699-711, 2002.

J. Caboche, E. Roze, K. Brami-cherrier, and S. Betuing, Chromatin remodeling: role in neuropathologies of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.527-545, 2010.

R. J. Carey, J. P. Huston, and C. P. Mü-ller, Pharmacological inhibition of dopamine and serotonin activity blocks spontaneous and cocaine-activated behaviour, Progress in Brain Research, vol.172, pp.347-360, 2008.

W. A. Carlezon and C. Konradi, Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules, Neuropharmacology, vol.47, pp.47-60, 2004.

W. A. Carlezon, S. D. Mague, and S. L. Andersen, Enduring behavioral effects of early exposure to methylphenidate in rats, Biological Psychiatry, vol.54, pp.1330-1337, 2003.

N. Carrey and M. Wilkinson, A review of psychostimulant-induced neuroadaptation in developing animals, Neuroscience Bulletin, vol.27, pp.197-214, 2011.

A. R. Carta, C. R. Gerfen, and H. Steiner, Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice, Neuroreport, vol.11, pp.2395-2399, 2000.

N. Castanon, K. Scearce-levie, J. J. Lucas, B. Rocha, and R. Hen, Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists, Pharmacology Biochemistry and Behavior, vol.67, pp.559-566, 2000.

M. A. Cenci and A. Bjö-rklund, Transection of corticostriatal afferents reduces amphetamine-and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats, European Journal of Neuroscience, vol.5, pp.1062-1070, 1993.

M. A. Cenci, K. Campbell, K. Wictorin, and A. Bjö-rklund, Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra in the rat, European Journal of Neuroscience, vol.4, pp.376-380, 1992.

T. Chase, N. Carrey, E. Soo, and M. Wilkinson, Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum, Neuroscience, vol.144, pp.969-984, 2007.

T. D. Chase, R. E. Brown, N. Carrey, and M. Wilkinson, Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats, Neuroreport, vol.14, pp.769-772, 2003.

T. D. Chase, N. Carrey, R. E. Brown, and M. Wilkinson, Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum, Developmental Brain Research, vol.157, pp.181-191, 2005.

T. D. Chase, N. Carrey, R. E. Brown, and M. Wilkinson, Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature rat brain, Developmental Brain Research, vol.156, pp.1-12, 2005.

A. Chatterjee, Is it acceptable for people to take methylphenidate to enhance performance? No, British Medical Journal, vol.338, 1956.

A. Chaudhuri, Neural activity mapping with inducible transcription factors, Neuroreport, vol.8, 1997.

G. Chevalier and J. M. Deniau, Disinhibition as a basic process in the expression of striatal functions, Trends in Neurosciences, vol.13, pp.277-280, 1990.

A. J. Cole, R. V. Bhat, C. Patt, P. F. Worley, and J. M. Baraban, D 1 dopamine receptor activation of multiple transcription factor genes in rat striatum, Journal of Neurochemistry, vol.58, pp.1420-1426, 1992.

L. Cotterly, J. A. Beverley, M. Yano, and H. Steiner, Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a, European Journal of Neuroscience, vol.25, pp.3617-3628, 2007.

C. A. Crawford, S. A. Baella, C. M. Farley, M. S. Herbert, L. R. Horn et al., Early methylphenidate exposure enhances cocaine selfadministration but not cocaine-induced conditioned place preference in young adult rats, Psychopharmacology, vol.213, pp.43-52, 2011.

H. S. Crombag, J. P. Jedynak, K. Redmond, T. E. Robinson, and B. T. Hope, Locomotor sensitization to cocaine is associated with increased Fos expression in the accumbens, but not in the caudate, Behavioural Brain Research, vol.136, pp.455-462, 2002.

A. Csoka, A. Bahrick, and O. P. Mehtonen, Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors, Journal of Sexual Medicine, vol.5, pp.227-233, 2008.

E. J. Curran, H. Akil, and S. J. Watson, Psychomotor stimulant-and opiate-induced c-fos mRNA expression patterns in the rat forebrain: comparisons between acute drug treatment and a drug challenge in sensitized animals, Neurochemical Research, vol.21, pp.1425-1435, 1996.

E. J. Curran and S. J. Watson, Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study, Journal of Comparative Neurology, vol.361, pp.57-76, 1995.

D. Damez-werno, Q. Laplant, H. Sun, K. N. Scobie, D. M. Dietz et al., Drug experience epigenetically primes fosb gene inducibility in rat nucleus accumbens, Journal of Neuroscience, vol.32, pp.10267-10272, 2012.

J. B. Daunais and J. F. Mcginty, Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs, Synapse, vol.18, pp.35-45, 1994.

M. R. Delong, Primate models of movement disorders of basal ganglia origin, Trends in Neurosciences, vol.13, pp.281-285, 1990.

G. Di-chiara and A. Imperato, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.5274-5278, 1988.

R. Diaz-heijtz, B. Kolb, and H. Forssberg, Can a therapeutic dose of amphetamine during pre-adolescence modify the pattern of synaptic organization in the brain?, European Journal of Neuroscience, vol.18, pp.3394-3399, 2003.

R. P. Dilts, T. E. Helton, and J. F. Mcginty, Selective induction of Fos and FRA immunoreactivity within the mesolimbic and mesostriatal dopamine terminal fields, Synapse, vol.13, pp.251-263, 1993.

J. Drago, C. R. Gerfen, H. Westphal, and H. Steiner, D 1 dopamine receptordeficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum, Neuroscience, vol.74, pp.813-823, 1996.

T. M. Engber, E. J. Koury, S. A. Dennis, M. S. Miller, P. C. Contreras et al., Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil, Neuroscience Letters, vol.241, pp.95-98, 1998.

B. J. Everitt and T. W. Robbins, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion, Nature Neuroscience, vol.8, pp.1481-1489, 2005.

M. J. Farah, J. Illes, R. Cook-deegan, H. Gardner, E. Kandel et al., Neurocognitive enhancement: what can we do and what should we do?, Nature Reviews Neuroscience, vol.5, pp.421-425, 2004.

S. M. Ferguson, D. Eskenazi, M. Ishikawa, M. J. Wanat, P. E. Phillips et al., Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization, Nature Neuroscience, vol.14, pp.22-24, 2011.

S. M. Ferguson and T. E. Robinson, Amphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/ MAPK signaling cascade, Journal of Neurochemistry, vol.91, pp.337-348, 2004.

C. R. Ferrario, G. Gorny, H. S. Crombag, Y. Li, B. Kolb et al., Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use, Biological Psychiatry, vol.58, pp.751-759, 2005.

M. Filip, M. Frankowska, M. Zaniewska, A. Go?da, and E. Przegali?-ski, The serotonergic system and its role in cocaine addiction, Pharmacological Reports, vol.57, pp.685-700, 2005.

E. M. Fiocchi, Y. G. Lin, L. Aimone, J. A. Gruner, and D. G. Flood, Armodafinil promotes wakefulness and activates Fos in rat brain, Pharmacology Biochemistry and Behavior, vol.92, pp.549-557, 2009.

A. E. Fleckenstein, T. J. Volz, and G. R. Hanson, Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications, Neuropharmacology, vol.56, pp.133-138, 2009.

P. S. Frankel, M. E. Alburges, L. Bush, G. R. Hanson, and S. J. Kish, Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users, Neuropharmacology, vol.55, pp.41-46, 2008.

R. A. Fuchs, R. K. Branham, and R. E. See, Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen, Journal of Neuroscience, vol.26, pp.3584-3588, 2006.

R. Fukui, P. Svenningsson, T. Matsuishi, H. Higashi, A. C. Nairn et al., Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice, Journal of Neurochemistry, vol.87, pp.1391-1401, 2003.

A. M. Gardier, R. Moratalla, B. Cuellar, M. Sacerdote, B. Guibert et al., Interaction between the serotoninergic and dopaminergic systems in D-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons, Journal of Neurochemistry, vol.74, pp.1363-1373, 2000.

S. J. Gatley, D. Pan, R. Chen, G. Chaturvedi, and Y. S. Ding, Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters, Life Sciences, vol.58, pp.231-239, 1996.

M. R. Gerasimov, M. Franceschi, N. D. Volkow, A. Gifford, S. J. Gatley et al., Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study, Journal of Pharmacology and Experimental Therapeutics, vol.295, pp.51-57, 2000.

G. L. Gerdeman, J. G. Partridge, C. R. Lupica, and D. M. Lovinger, It could be habit forming: drugs of abuse and striatal synaptic plasticity, Trends in Neurosciences, vol.26, pp.184-192, 2003.

C. R. Gerfen and J. P. Bolam, The neuroanatomical organization of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.3-28, 2010.

C. R. Gerfen, T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase et al., D 1 and D 2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, vol.250, pp.1429-1432, 1990.

C. R. Gerfen, K. A. Keefe, and E. B. Gauda, D 1 and D 2 dopamine receptor function in the striatum: coactivation of D 1 -and D 2 -dopamine receptors on separate populations of neurons results in potentiated immediate-early gene response in D 1 -containing neurons, Journal of Neuroscience, vol.15, pp.8167-8176, 1995.

K. E. Gill, P. J. Pierre, J. Daunais, A. J. Bennett, S. Martelle et al., Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates, Neuropsychopharmacology, vol.37, pp.2555-2565, 2012.

R. Z. Goldstein, P. A. Woicik, T. Maloney, D. Tomasi, N. Alia-klein et al., Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.16667-16672, 2010.

A. Gozzi, V. Colavito, P. F. Seke-etet, D. Montanari, S. Fiorini et al., Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat, Neuropsychopharmacology, vol.37, pp.822-837, 2012.

A. M. Graybiel, J. J. Canales, and C. Capper-loup, Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis, Trends in Neurosciences, vol.23, pp.71-77, 2000.

A. M. Graybiel, R. Moratalla, and H. A. Robertson, Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.6912-6916, 1990.

H. Greely, B. Sahakian, J. Harris, R. C. Kessler, M. Gazzaniga et al., Towards responsible use of cognitive-enhancing drugs by the healthy, Nature, vol.456, pp.702-705, 2008.

H. J. Groenewegen, H. W. Berendse, J. G. Wolters, and A. H. Lohman, The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization, Progress in Brain Research, vol.85, pp.95-116, 1990.

N. B. Gross and J. F. Marshall, Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression, Neuroscience, vol.161, pp.1114-1125, 2009.

S. P. Gygi, J. W. Gibb, and G. R. Hanson, Differential effects of antipsychotic and psychotomimetic drugs on neurotensin systems of discrete extrapyramidal and limbic regions, Journal of Pharmacology and Experimental Therapeutics, vol.270, pp.192-197, 1994.

S. N. Haber, The primate basal ganglia: parallel and integrative networks, Journal of Chemical Neuroanatomy, vol.26, pp.317-330, 2003.

G. R. Hanson, L. Bush, K. A. Keefe, and M. E. Alburges, Distinct responses of basal ganglia substance P systems to low and high doses of methamphetamine, Journal of Neurochemistry, vol.82, pp.1171-1178, 2002.

G. R. Hanson, K. M. Merchant, A. A. Letter, L. Bush, and J. W. Gibb, Methamphetamine-induced changes in the striatal-nigral dynorphin system: role of D-1 and D-2 receptors, European Journal of Pharmacology, vol.144, pp.245-246, 1987.

G. R. Hanson, L. P. Midgley, L. G. Bush, M. Johnson, and J. W. Gibb, Comparison of responses by neuropeptide systems in rat to the psychotropic drugs, methamphetamine, cocaine and PCP, NIDA Research Monograph, vol.95, p.348, 1989.

G. R. Hanson, N. Singh, K. Merchant, M. Johnson, L. Bush et al., Responses of limbic and extrapyramidal neurotensin systems to stimulants of abuse. Involvement of dopaminergic mechanisms, Annals of the New York Academy of Sciences, vol.668, pp.165-172, 1992.

G. R. Hanson, N. Singh, K. Merchant, M. Johnson, and J. W. Gibb, The role of NMDA receptor systems in neuropeptide responses to stimulants of abuse, Drug and Alcohol Dependence, vol.37, pp.107-110, 1995.

R. E. Harlan and M. M. Garcia, Drugs of abuse and immediate-early genes in the forebrain, Molecular Neurobiology, vol.16, pp.221-267, 1998.

J. Harris, Is it acceptable for people to take methylphenidate to enhance performance? Yes, British Medical Journal, vol.338, 1955.

S. Hasan, S. Pradervand, A. Ahnaou, W. Drinkenburg, M. Tafti et al., How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion, Neuropsychopharmacology, vol.34, pp.1625-1640, 2009.

C. M. Hawken, R. E. Brown, N. Carrey, and M. Wilkinson, Long-term methylphenidate treatment down-regulates c-fos in the striatum of male CD-1 mice, Neuroreport, vol.15, pp.1045-1048, 2004.

M. Heiman, A. Schaefer, S. Gong, J. D. Peterson, M. Day et al., A translational profiling approach for the molecular characterization of CNS cell types, Cell, vol.135, pp.738-748, 2008.

B. Hope, B. Kosofsky, S. E. Hyman, and E. J. Nestler, Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine, Proceedings of the National Academy of Sciences of the United States of America, vol.89, pp.5764-5768, 1992.

B. T. Hope, H. E. Nye, M. B. Kelz, D. W. Self, M. J. Iadarola et al., Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments, Neuron, vol.13, pp.1235-1244, 1994.

Y. L. Hurd and M. Herkenham, Influence of a single injection of cocaine, amphetamine or GBR 12909 on mRNA expression of striatal neuropeptides, Molecular Brain Research, vol.16, pp.97-104, 1992.

Y. L. Hurd and M. Herkenham, Molecular alterations in the neostriatum of human cocaine addicts, Synapse, vol.13, pp.357-369, 1993.

Y. L. Hurd and U. Ungerstedt, In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen, European Journal of Pharmacology, vol.166, pp.251-260, 1989.

M. Husain and M. A. Mehta, Cognitive enhancement by drugs in health and disease, Trends in Cognitive Sciences, vol.15, pp.28-36, 2011.

S. E. Hyman, Addiction: a disease of learning and memory, American Journal of Psychiatry, vol.162, pp.1414-1422, 2005.

S. E. Hyman, Cognitive enhancement: promises and perils, Neuron, vol.69, pp.595-598, 2011.

S. E. Hyman, R. L. Cole, M. Schwarzschild, D. Cole, B. Hope et al., Molecular mechanisms of striatal gene regulation: a critical role for glutamate in dopamine-mediated gene induction, CRC, pp.115-131, 1996.

S. E. Hyman and R. C. Malenka, Addiction and the brain: the neurobiology of compulsion and its persistence, Nature Reviews Neuroscience, vol.2, pp.695-703, 2001.

S. E. Hyman and E. J. Nestler, Initiation and adaptation: a paradigm for understanding psychotropic drug action, American Journal of Psychiatry, vol.153, pp.151-162, 1996.

M. Ishii, Y. Tatsuzawa, A. Yoshino, and S. Nomura, Serotonin syndrome induced by augmentation of SSRI with methylphenidate, Psychiatry and Clinical Neurosciences, vol.62, p.246, 2008.

M. Jaber, M. Cador, B. Dumartin, E. Normand, L. Stinus et al., Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons, Neuroscience, vol.65, pp.1041-1050, 1995.

J. P. Jedynak, J. M. Uslaner, J. A. Esteban, and T. E. Robinson, Methamphetamineinduced structural plasticity in the dorsal striatum, European Journal of Neuroscience, vol.25, pp.847-853, 2007.

D. Joel and I. Weiner, The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated, Neuroscience, vol.63, pp.363-379, 1994.

B. Johansson, K. Lindströ-m, and B. B. Fredholm, Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat, Neuroscience, vol.59, pp.837-849, 1994.

M. Johnson, L. G. Bush, J. W. Gibb, and G. R. Hanson, Role of N-methyl-D-aspartate (NMDA) receptors in the response of extrapyramidal neurotensin and dynorphin A systems to cocaine and GBR 12909, Biochemical Pharmacology, vol.41, pp.649-652, 1991.

A. Kankaanpaa, E. Meririnne, and T. Seppala, 5-HT3 receptor antagonist MDL 72222 attenuates cocaine-and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat, Psychopharmacology, vol.159, pp.341-350, 2002.

K. A. Keefe and K. A. Horner, Neurotransmitter regulation of basal ganglia gene expression, Handbook of Basal Ganglia Structure and Function, pp.461-490, 2010.

A. E. Kelley, Memory and addiction: shared neural circuitry and molecular mechanisms, Neuron, vol.44, pp.161-179, 2004.

Y. Kim, M. A. Teylan, M. Baron, A. Sands, A. C. Nairn et al., Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.2915-2920, 2009.

E. Knapska and L. Kaczmarek, A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?, Progress in Neurobiology, vol.74, pp.183-211, 2004.

S. H. Kollins, ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines, Journal of Attention Disorders, vol.12, pp.115-125, 2008.

S. H. Kollins, E. K. Macdonald, and C. R. Rush, Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review, Pharmacology Biochemistry and Behavior, vol.68, pp.611-627, 2001.

C. Konradi, J. E. Westin, M. Carta, M. E. Eaton, K. Kuter et al., Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia, Neurobiology of Disease, vol.17, pp.219-236, 2004.

B. E. Kosofsky, L. M. Genova, and S. E. Hyman, Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum, Journal of Comparative Neurology, vol.351, pp.41-50, 1995.

A. V. Kravitz, B. S. Freeze, P. R. Parker, K. Kay, M. T. Thwin et al., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry, Nature, vol.466, pp.622-626, 2010.

R. Kuczenski and D. S. Segal, Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine, Journal of Neurochemistry, vol.68, pp.2032-2037, 1997.

R. Kuczenski and D. S. Segal, Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine, Journal of Pharmacology and Experimental Therapeutics, vol.296, pp.876-883, 2001.

R. Kuczenski and D. S. Segal, Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse, Biological Psychiatry, vol.57, pp.1391-1396, 2005.

M. J. Kuhar and N. S. Pilotte, Neurochemical changes in cocaine withdrawal, Trends in Pharmacological Sciences, vol.17, pp.260-264, 1996.

G. J. Lahoste, D. N. Ruskin, and J. F. Marshall, Cerebrocortical Fos expression following dopaminergic stimulation: D 1 /D 2 synergism and its breakdown, Brain Research, vol.728, pp.97-104, 1996.

G. J. Lahoste, J. Yu, and J. F. Marshall, Striatal Fos expression is indicative of dopamine D 1 /D 2 synergism and receptor supersensitivity, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.7451-7455, 1993.

C. Lanni, S. C. Lenzken, A. Pascale, I. Del-vecchio, M. Racchi et al., Cognition enhancers between treating and doping the mind, Pharmacological Research, vol.57, pp.196-213, 2008.

H. Lavretsky, M. D. Kim, A. Kumar, and C. F. Reynolds, Combined treatment with methylphenidate and citalopram for accelerated response in the elderly: an open trial, Journal of Clinical Psychiatry, vol.64, pp.1410-1414, 2003.

C. Le-moine and B. Bloch, D 1 and D 2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D 1 and D 2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum, Journal of Comparative Neurology, vol.355, pp.418-426, 1995.

C. Le-moine and B. Bloch, Expression of the D 3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D 1 and D 2 dopamine receptors, Neuroscience, vol.73, pp.131-143, 1996.

C. Le-moine, E. Normand, and B. Bloch, Phenotypical characterization of the rat striatal neurons expressing the D 1 dopamine receptor gene, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.4205-4209, 1991.

C. Le-moine, E. Normand, A. F. Guitteny, B. Fouque, R. Teoule et al., Dopamine receptor gene expression by enkephalin neurons in rat forebrain, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.230-234, 1990.

C. Le-moine, P. Svenningsson, B. B. Fredholm, and B. Bloch, Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D 2 or A2A receptors enhances D 1 receptor-mediated effects on c-fos expression, Journal of Neuroscience, vol.17, pp.8038-8048, 1997.

B. E. Leonard, D. Mccartan, J. White, and D. J. King, Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects, Human Psychopharmacology, vol.19, pp.151-180, 2004.

A. A. Letter, K. Merchant, J. W. Gibb, and G. R. Hanson, Effect of methamphetamine on neurotensin concentrations in rat brain regions, Journal of Pharmacology and Experimental Therapeutics, vol.241, pp.443-447, 1987.

B. H. Li and N. E. Rowland, Dexfenfluramine induces Fos-like immunoreactivity in discrete brain regions in rats, Brain Research Bulletin, vol.31, pp.43-48, 1993.

S. J. Li, S. P. Sivam, J. F. Mcginty, H. K. Jiang, J. Douglass et al., Regulation of the metabolism of striatal dynorphin by the dopaminergic system, Journal of Pharmacology and Experimental Therapeutics, vol.246, pp.403-408, 1988.

J. S. Lin, Y. Hou, and M. Jouvet, Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.14128-14133, 1996.

M. K. Lobo, H. E. Covington, D. Chaudhury, A. K. Friedman, H. Sun et al., Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward, Science, vol.330, pp.385-390, 2010.

M. K. Lobo and E. J. Nestler, The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons, Frontiers in Neuroanatomy, vol.5, p.41, 2011.

C. J. Loland, M. Mereu, O. M. Okunola, J. Cao, T. E. Prisinzano et al., R-Modafinil (Armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse, Biological Psychiatry, vol.72, pp.405-413, 2012.

E. D. London, N. G. Cascella, D. F. Wong, R. L. Phillips, R. F. Dannals et al., Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and, Archives of General Psychiatry, vol.47, pp.567-574, 1990.

J. J. Lucas, L. Segu, and R. Hen, 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935, Molecular Pharmacology, vol.51, pp.755-763, 1997.

S. Mache, P. Eickenhorst, K. Vitzthum, B. F. Klapp, and D. A. Groneberg, Cognitiveenhancing substance use at German universities: frequency, reasons and gender differences, Wiener Medizinische Wochenschrift, vol.162, pp.262-271, 2012.

B. K. Madras, Z. Xie, Z. Lin, A. Jassen, H. Panas et al., Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro, Journal of Pharmacology and Experimental Therapeutics, vol.319, pp.561-569, 2006.

B. Maher, Poll results: look who's doping, Nature, vol.452, pp.674-675, 2008.

E. M. Marco, W. Adriani, L. A. Ruocco, R. Canese, A. G. Sadile et al., Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure, Neuroscience and Biobehavioral Reviews, vol.35, pp.1722-1739, 2011.

A. M. Mathieu-kia and M. J. Besson, Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat, Molecular Brain Research, vol.54, pp.141-151, 1998.

B. J. Mattson, E. Koya, D. E. Simmons, T. B. Mitchell, A. Berkow et al., Context-specific sensitization of cocaine-induced locomotor activity and associated neuronal ensembles in rat nucleus accumbens, European Journal of Neuroscience, vol.27, pp.202-212, 2008.

C. A. Mcclung and E. J. Nestler, Regulation of gene expression and cocaine reward by CREB and DeltaFosB, Nature Neuroscience, vol.6, pp.1208-1215, 2003.

C. A. Mcclung, P. G. Ulery, L. I. Perrotti, V. Zachariou, O. Berton et al., DeltaFosB: a molecular switch for long-term adaptation in the brain, Molecular Brain Research, vol.132, pp.146-154, 2004.

A. J. Mcgeorge and R. L. Faull, The organization of the projection from the cerebral cortex to the striatum in the rat, Neuroscience, vol.29, pp.503-537, 1989.

J. F. Mcginty, X. D. Shi, M. Schwendt, A. Saylor, and S. Toda, Regulation of psychostimulant-induced signaling and gene expression in the striatum, Journal of Neurochemistry, vol.104, pp.1440-1449, 2008.

E. Meririnne, A. Kankaanpaa, and T. Seppala, Rewarding properties of methylphenidate: sensitization by prior exposure to the drug and effects of dopamine D 1 -and D 2 -receptor antagonists, Journal of Pharmacology and Experimental Therapeutics, vol.298, pp.539-550, 2001.

M. J. Mijnster, Y. Galis-de-graaf, and P. Voorn, Serotonergic regulation of neuropeptide and glutamic acid decarboxylase mRNA levels in the rat striatum and globus pallidus: studies with fluoxetine and DOI, Molecular Brain Research, vol.54, pp.64-73, 1998.

M. J. Minzenberg and C. S. Carter, Modafinil: a review of neurochemical actions and effects on cognition, Neuropsychopharmacology, vol.33, pp.1477-1502, 2008.

R. Moratalla, B. Elibol, M. Vallejo, and A. M. Graybiel, Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal, Neuron, vol.17, pp.147-156, 1996.

R. Moratalla, H. A. Robertson, and A. M. Graybiel, Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum, Journal of Neuroscience, vol.12, pp.2609-2622, 1992.

R. Moratalla, M. Xu, S. Tonegawa, and A. M. Graybiel, Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D 1 dopamine receptor, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.14928-14933, 1996.

B. J. Morris, S. Reimer, V. Hollt, and A. Herz, Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway, Brain Research, vol.464, pp.15-22, 1988.

C. P. Muller and J. P. Huston, Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine, Trends in Pharmacological Sciences, vol.27, pp.105-112, 2006.

Y. Nakabeppu and D. Nathans, A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity, Cell, vol.64, pp.751-759, 1991.

N. H. Naqvi, D. Rudrauf, H. Damasio, and A. Bechara, Damage to the insula disrupts addiction to cigarette smoking, Science, vol.315, pp.531-534, 2007.

R. Natarajan and B. K. Yamamoto, The basal ganglia as a substrate for the multiple actions of amphetamines, Basal Ganglia, vol.1, pp.49-57, 2011.

J. C. Nelson, Augmentation strategies in the treatment of major depressive disorder. Recent findings and current status of augmentation strategies, CNS Spectrums, vol.12, pp.6-9, 2007.

E. J. Nestler, Molecular basis of long-term plasticity underlying addiction, Nature Reviews Neuroscience, vol.2, pp.119-128, 2001.

E. J. Nestler and W. A. Carlezon, The mesolimbic dopamine reward circuit in depression, Biological Psychiatry, vol.59, pp.1151-1159, 2006.

T. V. Nguyen, B. E. Kosofsky, R. Birnbaum, B. M. Cohen, and S. E. Hyman, Differential expression of c-Fos and Zif268 in rat striatum after haloperidol, clozapine, and amphetamine, Proceedings of the National Academy of Sciences of the United States of America, vol.89, pp.4270-4274, 1992.

H. E. Nye, B. T. Hope, M. B. Kelz, M. Iadarola, and E. J. Nestler, Pharmacological studies of the regulation of chronic FOS-related antigen induction by cocaine in the striatum and nucleus accumbens, Journal of Pharmacology and Experimental Therapeutics, vol.275, pp.1671-1680, 1995.

E. C. O'connor, K. Chapman, P. Butler, and A. N. Mead, The predictive validity of the rat self-administration model for abuse liability, Neuroscience and Biobehavioral Reviews, vol.35, pp.912-938, 2011.

T. F. Oberlander, J. A. Gingrich, and M. S. Ansorge, Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence, Clinical Pharmacology and Therapeutics, vol.86, pp.672-677, 2009.

J. D. Olivier, T. Blom, T. Arentsen, and J. R. Homberg, The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents: a review, Neuropsychopharmacology and Biological Psychiatry, vol.35, pp.1400-1408, 2011.

D. E. Oorschot, Cell types in the different nuclei of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.63-74, 2010.

D. E. Oorschot, The percentage of interneurons in the dorsal striatum of the rat, cat, monkey and human: a critique of the evidence, Basal Ganglia, vol.3

S. M. Outram, The use of methylphenidate among students: the future of enhancement, Journal of Medical Ethics, vol.36, pp.198-202, 2010.

D. Pan, S. J. Gatley, S. L. Dewey, R. Chen, D. A. Alexoff et al., Binding of bromine-substituted analogs of methylphenidate to monoamine transporters, European Journal of Neuroscience, vol.264, pp.177-182, 1994.

T. V. Parran and D. R. Jasinski, Intravenous methylphenidate abuse. Prototype for prescription drug abuse, Archives of Internal Medicine, vol.151, pp.781-783, 1991.

V. Pascoli, E. Valjent, A. G. Corbille, J. C. Corvol, J. P. Tassin et al., cAMP and extracellular signal-regulated kinase signaling in response to Damphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta1-adrenoceptors, Molecular Pharmacology, vol.68, pp.421-429, 2005.

R. E. Passingham, C. Myers, N. Rawlins, V. Lightfoot, and S. Fearn, Premotor cortex in the rat, Behavioral Neuroscience, vol.102, pp.101-109, 1988.

M. L. Paul, A. M. Graybiel, J. David, and H. A. Robertson, D 1 -like and D 2 -like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease, Journal of Neuroscience, vol.12, pp.3729-3742, 1992.

M. R. Penner, M. P. Mcfadyen, R. Pinaud, N. Carrey, H. A. Robertson et al., Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration, Developmental Brain Research, vol.135, pp.71-77, 2002.

A. M. Persico, C. W. Schindler, M. T. Brannock, A. M. Gonzalez, C. K. Surratt et al., Dopaminergic gene expression during amphetamine withdrawal, Neuroreport, vol.4, pp.41-44, 1993.

T. Petersen, C. Dording, N. B. Neault, R. Kornbluh, J. E. Alpert et al., A survey of prescribing practices in the treatment of depression, Progress in Neuropsychopharmacology and Biological Psychiatry, vol.26, pp.177-187, 2002.

R. C. Pierce and P. W. Kalivas, A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants, Brain Research Reviews, vol.25, pp.192-216, 1997.

A. Pinna, J. Wardas, G. Cristalli, and M. Morelli, Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas, Brain Research, vol.759, pp.41-49, 1997.

A. Pisani, G. Bernardi, J. Ding, and D. J. Surmeier, Re-emergence of striatal cholinergic interneurons in movement disorders, Trends in Neurosciences, vol.30, pp.545-553, 2007.

L. J. Porrino, H. R. Smith, M. A. Nader, and T. J. Beveridge, The effects of cocaine: a shifting target over the course of addiction, Progress in Neuropsychopharmacology and Biological Psychiatry, vol.31, pp.1593-1600, 2007.

T. M. Preuss, Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered, Journal of Cognitive Neuroscience, vol.7, pp.1-24, 1995.

W. M. Qu, Z. L. Huang, X. H. Xu, N. Matsumoto, and Y. Urade, Dopaminergic D 1 and D 2 receptors are essential for the arousal effect of modafinil, Journal of Neuroscience, vol.28, pp.8462-8469, 2008.

A. V. Ravindran, S. H. Kennedy, M. C. O'donovan, A. Fallu, F. Camacho et al., Osmotic-release oral system methylphenidate augmentation of antidepressant monotherapy in major depressive disorder: results of a double-blind, randomized, placebo-controlled trial, Journal of Clinical Psychiatry, vol.69, pp.87-94, 2008.

P. Redgrave, M. Rodriguez, Y. Smith, M. C. Rodriguez-oroz, S. Lehericy et al., Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease, Nature Reviews Neuroscience, vol.11, pp.760-772, 2010.

R. L. Reep, J. L. Cheatwood, and J. V. Corwin, The associative striatum: organization of cortical projections to the dorsocentral striatum in rats, Journal of Comparative Neurology, vol.467, pp.271-292, 2003.

R. L. Reep, J. V. Corwin, A. Hashimoto, and R. T. Watson, Efferent connections of the rostral portion of medial agranular cortex in rats, Brain Research Bulletin, vol.19, pp.203-221, 1987.

C. M. Reichel and R. E. See, Chronic modafinil effects on drug-seeking following methamphetamine self-administration in rats, International Journal of Neuropsychopharmacology, vol.15, pp.919-929, 2012.

W. Renthal, T. L. Carle, I. Maze, H. E. Covington, H. T. Truong et al., Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure, Journal of Neuroscience, vol.28, pp.7344-7349, 2008.

W. Renthal and E. J. Nestler, Epigenetic mechanisms in drug addiction, Trends in Molecular Medicine, vol.14, pp.341-350, 2008.

M. C. Ritz, E. J. Cone, and M. J. Kuhar, Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study, Life Sciences, vol.46, pp.635-645, 1990.

T. W. Robbins and B. J. Everitt, Drug addiction: bad habits add up, Nature, vol.398, pp.567-570, 1999.

T. W. Robbins, S. Granon, J. L. Muir, F. Durantou, A. Harrison et al., Neural systems underlying arousal and attention. Implications for drug abuse, Annals of the New York Academy of Sciences, vol.846, pp.222-237, 1998.

T. E. Robinson and B. Kolb, Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine, Journal of Neuroscience, vol.17, pp.8491-8497, 1997.

D. N. Ruskin and J. F. Marshall, Amphetamine-and cocaine-induced fos in the rat striatum depends on D 2 dopamine receptor activation, Synapse, vol.18, pp.233-240, 1994.

D. J. Safer, J. M. Zito, and S. Dosreis, Concomitant psychotropic medication for youths, American Journal of Psychiatry, vol.160, pp.438-449, 2003.

A. N. Samaha, N. Mallet, S. M. Ferguson, F. Gonon, and T. E. Robinson, The rate of cocaine administration alters gene regulation and behavioral plasticity: implications for addiction, Journal of Neuroscience, vol.24, pp.6362-6370, 2004.

A. N. Samaha and T. E. Robinson, Why does the rapid delivery of drugs to the brain promote addiction?, Trends in Pharmacological Sciences, vol.26, pp.82-87, 2005.

V. Sandoval, E. L. Riddle, G. R. Hanson, and A. E. Fleckenstein, Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors, Journal of Neuroscience, vol.22, pp.8705-8710, 2002.

V. Sandoval, E. L. Riddle, G. R. Hanson, and A. E. Fleckenstein, Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits, Journal of Pharmacology and Experimental Therapeutics, vol.304, pp.1181-1187, 2003.

S. M. Sato, A. M. Wissman, A. F. Mccollum, C. S. Woolley, T. E. Scammell et al., Quantitative mapping of cocaine-induced DFosB expression in the striatum of male and female rats, Journal of Neuroscience, vol.6, pp.8620-8628, 2000.

S. Schenk and S. Izenwasser, Pretreatment with methylphenidate sensitizes rats to the reinforcing effects of cocaine, Pharmacology Biochemistry and Behavior, vol.72, pp.651-657, 2002.

K. C. Schmitt and M. E. Reith, The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors, PLoS One, vol.6, 2011.

J. Schwartz, J. Diaz, R. Bordet, N. Griffon, S. Perachon et al., Functional implications of multiple dopamine receptor subtypes: the D 1 /D 3 receptor coexistence, Brain Research Reviews, vol.26, pp.236-242, 1998.

M. M. Schweri, P. Skolnick, M. F. Rafferty, K. C. Rice, A. J. Janowsky et al., , 1985.

, AE)-methylphenidate binding to 3,4-dihydroxyphenylethylamine uptake sites in corpus striatum: correlation with the stimulant properties of ritalinic acid esters, Journal of Neurochemistry, vol.45, pp.1062-1070

R. E. See, J. C. Elliott, and M. W. Feltenstein, The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats, Psychopharmacology, vol.194, pp.321-331, 2007.

D. S. Segal and R. Kuczenski, Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile, Journal of Pharmacology and Experimental Therapeutics, vol.291, pp.19-30, 1999.

F. R. Sharp, S. M. Sagar, and R. A. Swanson, Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose, Critical Reviews in Neurobiology, vol.7, pp.205-228, 1993.

T. S. Shippenberg and C. Heidbreder, Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics, Journal of Pharmacology and Experimental Therapeutics, vol.273, pp.808-815, 1995.

T. S. Shippenberg, A. Zapata, and V. I. Chefer, Dynorphin and the pathophysiology of drug addiction, Pharmacology and Therapeutics, vol.116, pp.306-321, 2007.

S. P. Sivam, Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism, Journal of Pharmacology and Experimental Therapeutics, vol.250, pp.818-824, 1989.

P. L. Smiley, M. Johnson, L. Bush, J. W. Gibb, and G. R. Hanson, Effects of cocaine on extrapyramidal and limbic dynorphin systems, Journal of Pharmacology and Experimental Therapeutics, vol.253, pp.938-943, 1990.

A. J. Smith and J. F. Mcginty, Acute amphetamine or methamphetamine alters opioid peptide mRNA expression in rat striatum, Molecular Brain Research, vol.21, pp.359-362, 1994.

M. Sofuoglu, E. E. Devito, A. J. Waters, and K. M. Carroll, Cognitive enhancement as a treatment for drug addictions, Neuropharmacology, vol.64, pp.452-463, 2013.

M. V. Solanto, Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research, Behavioural Brain Research, vol.130, pp.65-71, 2002.

R. Spangler, E. M. Unterwald, and M. J. Kreek, Binge' cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen, Molecular Brain Research, vol.19, pp.323-327, 1993.

R. Spangler, Y. Zhou, C. E. Maggos, S. D. Schlussman, A. Ho et al., Prodynorphin, proenkephalin and kappa opioid receptor mRNA responses to acute ''binge'' cocaine, Molecular Brain Research, vol.44, pp.139-142, 1997.

H. Steiner, Basal ganglia -cortex interactions: regulation of cortical function by D 1 dopamine receptors in the striatum, Monoaminergic Modulation of Cortical Excitability, pp.265-285, 2007.

H. Steiner, Psychostimulant-induced gene regulation in corticostriatal circuits, Handbook of Basal Ganglia Structure and Function, pp.501-525, 2010.

H. Steiner and C. R. Gerfen, Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum, Journal of Neuroscience, vol.13, pp.5066-5081, 1993.

H. Steiner and C. R. Gerfen, Tactile sensory input regulates basal and apomorphine-induced immediate-early gene expression in rat barrel cortex, Journal of Comparative Neurology, vol.344, pp.297-304, 1994.

H. Steiner and C. R. Gerfen, Dynorphin opioid inhibition of cocaine-induced, D 1 dopamine receptor-mediated immediate-early gene expression in the striatum, Journal of Comparative Neurology, vol.353, pp.200-212, 1995.

H. Steiner and C. R. Gerfen, Dynorphin regulates D 1 dopamine receptor-mediated responses in the striatum: relative contributions of pre-and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction, Journal of Comparative Neurology, vol.376, pp.530-541, 1996.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Experimental Brain Research, vol.123, pp.60-76, 1998.

H. Steiner and C. R. Gerfen, Enkephalin regulates acute D 2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons, Neuroscience, vol.88, pp.795-810, 1999.

H. Steiner and S. T. Kitai, Regulation of rat cortex function by D 1 dopamine receptors in the striatum, Journal of Neuroscience, vol.20, pp.5449-5460, 2000.

H. Steiner, V. Van-waes, and M. Marinelli, Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use of cognitive enhancers?, Biological Psychiatry, vol.67, pp.592-594, 2010.

D. Sulzer, How addictive drugs disrupt presynaptic dopamine neurotransmission, Neuron, vol.69, pp.628-649, 2011.

S. I. Svetlov, F. H. Kobeissy, and M. S. Gold, Performance enhancing, non-prescription use of Ritalin: a comparison with amphetamines and cocaine, Journal of Addictive Diseases, vol.26, pp.1-6, 2007.

J. M. Swanson and N. D. Volkow, Serum and brain concentrations of methylphenidate: implications for use and abuse, Neuroscience and Biobehavioral Reviews, vol.27, pp.615-621, 2003.

J. M. Swanson and N. D. Volkow, Increasing use of stimulants warns of potential abuse, Nature, vol.453, p.586, 2008.

C. J. Teter, S. E. Mccabe, K. Lagrange, J. A. Cranford, and C. J. Boyd, Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration, Pharmacotherapy, vol.26, pp.1501-1510, 2006.

P. K. Thanos, M. Michaelides, H. Benveniste, G. J. Wang, and N. D. Volkow, Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents, Pharmacology Biochemistry and Behavior, vol.87, pp.426-433, 2007.

U. Thomas, Modulation of synaptic signalling complexes by Homer proteins, Journal of Neurochemistry, vol.81, pp.407-413, 2002.

M. S. Todtenkopf, A. Mihalakopoulos, and J. R. Stellar, Withdrawal duration differentially affects c-fos expression in the medial prefrontal cortex and discrete subregions of the nucleus accumbens in cocaine-sensitized rats, Neuroscience, vol.114, pp.1061-1069, 2002.

G. Torres and J. M. Horowitz, Drugs of abuse and brain gene expression, Psychosomatic Medicine, vol.61, pp.630-650, 1999.

G. Torres and C. Rivier, Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists, Brain Research Bulletin, vol.30, pp.173-176, 1993.

G. Torres and C. Rivier, Induction of c-fos in rat brain by acute cocaine and fenfluramine exposure: a comparison study, Brain Research, vol.647, pp.1-9, 1994.

M. Touret, M. Sallanon-moulin, C. Fages, V. Roudier, M. Didier-bazes et al., Effects of modafinil-induced wakefulness on glutamine synthetase regulation in the rat brain, Molecular Brain Research, vol.26, pp.123-128, 1994.

J. V. Trinh, D. L. Nehrenberg, J. P. Jacobsen, M. G. Caron, and W. C. Wetsel, Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice, Neuroscience, vol.118, pp.297-310, 2003.

T. F. Tropea, R. M. Guerriero, I. Willuhn, E. M. Unterwald, M. E. Ehrlich et al., Augmented D1 dopamine receptor signaling and immediate-early gene induction in adult striatum after prenatal cocaine, Biological Psychiatry, vol.63, pp.1066-1074, 2008.

T. M. Tzschentke, Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade, Addiction Biology, vol.12, pp.227-462, 2007.

C. T. Unal, J. A. Beverley, I. Willuhn, and H. Steiner, Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a, European Journal of Neuroscience, vol.29, pp.1615-1626, 2009.

J. Uslaner, A. Badiani, C. S. Norton, H. E. Day, S. J. Watson et al., Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context, European Journal of Neuroscience, vol.13, pp.1977-1983, 2001.

H. B. Uylings, H. J. Groenewegen, and B. Kolb, Do rats have a prefrontal cortex, Behavioural Brain Research, vol.146, pp.3-17, 2003.

V. Van-waes, J. Beverley, M. Marinelli, and H. Steiner, Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum, European Journal of Neuroscience, vol.32, pp.435-447, 2010.

V. Van-waes, B. Carr, J. A. Beverley, and H. Steiner, Fluoxetine potentiation of methylphenidate-induced neuropeptide expression in the striatum occurs selectively in direct pathway (striatonigral) neurons, Journal of Neurochemistry, vol.122, pp.1054-1064, 2012.

V. Van-waes, M. Vandrevala, J. Beverley, and H. Steiner, SSRIs potentiate methylphenidate-induced blunting of gene expression in the adolescent striatum, 2012.

L. J. Vanderschuren, P. Di-ciano, and B. J. Everitt, Involvement of the dorsal striatum in cue-controlled cocaine seeking, Journal of Neuroscience, vol.25, pp.8665-8670, 2005.

L. J. Vanderschuren and B. J. Everitt, Behavioral and neural mechanisms of compulsive drug seeking, European Journal of Pharmacology, vol.526, pp.77-88, 2005.

J. M. Vargo and J. F. Marshall, Time-dependent changes in dopamine agonistinduced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury, Synapse, vol.20, pp.305-315, 1995.

P. Vezina, Sensitization of midbrain dopamine neuron reactivity and the selfadministration of psychomotor stimulant drugs, Neuroscience and Biobehavioral Reviews, vol.27, pp.827-839, 2004.

N. D. Volkow, J. S. Fowler, J. Logan, D. Alexoff, W. Zhu et al., Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications, Journal of the American Medical Association, vol.301, pp.1148-1154, 2009.

N. D. Volkow, G. Wang, J. S. Fowler, J. Logan, M. Gerasimov et al., Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain, Journal of Neuroscience, vol.21, issue.RC121, pp.1-5, 2001.

N. D. Volkow, G. J. Wang, J. S. Fowler, S. J. Gatley, J. Logan et al., Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate, American Journal of Psychiatry, vol.155, pp.1325-1331, 1998.

N. D. Volkow, G. J. Wang, D. Tomasi, F. Telang, J. S. Fowler et al., Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers, PLoS One, vol.5, 2010.

K. T. Wakabayashi, M. J. Weiss, K. N. Pickup, and T. E. Robinson, Rats markedly escalate their intake and show a persistent susceptibility to reinstatement only when cocaine is injected rapidly, Journal of Neuroscience, vol.30, pp.11346-11355, 2010.

P. D. Walker, J. G. Capodilupo, W. A. Wolf, and L. R. Carlock, Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission, Brain Research, vol.732, pp.25-35, 1996.

S. C. Wall, H. Gu, and G. Rudnick, Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux, Molecular Pharmacology, vol.47, pp.544-550, 1995.

J. Q. Wang, J. B. Daunais, and J. F. Mcginty, NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum, Synapse, vol.18, pp.343-353, 1994.

J. Q. Wang, J. B. Daunais, and J. F. Mcginty, Role of kainate/AMPA receptors in induction of striatal zif/268 and preprodynorphin mRNA by a single injection of amphetamine, Molecular Brain Research, vol.27, pp.118-126, 1994.

J. Q. Wang and J. F. Mcginty, Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats, Brain Research, vol.673, pp.262-274, 1995.

J. Q. Wang and J. F. Mcginty, Dose-dependent alteration in zif/268 and preprodynorphin mRNA expression induced by amphetamine or methamphetamine in rat forebrain, Journal of Pharmacology and Experimental Therapeutics, vol.273, pp.909-917, 1995.

J. Q. Wang and J. F. Mcginty, D 1 and D 2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine, Synapse, vol.22, pp.114-122, 1996.

J. Q. Wang and J. F. Mcginty, Glutamatergic and cholinergic regulation of immediate-early gene and neuropeptide gene expression in the striatum, CRC, pp.81-113, 1996.

J. Q. Wang and J. F. Mcginty, The full D 1 dopamine receptor agonist SKF-82958 induces neuropeptide mRNA in the normosensitive striatum of rats: regulation of D 1 /D 2 interactions by muscarinic receptors, Journal of Pharmacology and Experimental Therapeutics, vol.281, pp.972-982, 1997.

J. Q. Wang, A. J. Smith, and J. F. Mcginty, A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain, Neuroscience, vol.68, pp.83-95, 1995.

B. L. Warren, S. D. Iñ-iguez, L. F. Alcantara, K. N. Wright, E. M. Parise et al., Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward-and moodrelated stimuli and disrupts ventral tegmental area gene expression in adulthood, Journal of Neuroscience, vol.31, pp.10347-10358, 2011.

B. P. White, K. A. Becker-blease, and K. Grace-bishop, Stimulant medication use, misuse, and abuse in an undergraduate and graduate student sample, Journal of American College Health, vol.54, pp.261-268, 2006.

T. E. Wilens, L. A. Adler, J. Adams, S. Sgambati, J. Rotrosen et al., Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature, Journal of the American Academy of Child and Adolescent Psychiatry, vol.47, pp.21-31, 2008.

T. E. Wilens, S. V. Faraone, J. Biederman, and S. Gunawardene, Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature, Pediatrics, vol.111, pp.179-185, 2003.

M. D. Wiley, L. B. Poveromo, J. Antapasis, C. M. Herrera, and C. A. Bolañ-os-guzmá-n, Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate, Neuropsychopharmacology, vol.34, pp.1339-1350, 2009.

J. T. Willie, W. Renthal, R. M. Chemelli, M. S. Miller, T. E. Scammell et al., Modafinil more effectively induces wakefulness in orexinnull mice than in wild-type littermates, Neuroscience, vol.130, pp.983-995, 2005.

I. Willuhn, W. Sun, and H. Steiner, Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context, European Journal of Neuroscience, vol.17, pp.1053-1066, 2003.

D. Wirtshafter and D. F. Cook, Serotonin-1B agonists induce compartmentally organized striatal Fos expression in rats, Neuroreport, vol.9, pp.1217-1221, 1998.

C. I. Wright and H. J. Groenewegen, Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat, Neuroscience, vol.73, pp.359-373, 1996.

B. Xiao, J. C. Tu, and P. F. Worley, Homer: a link between neural activity and glutamate receptor function, Current Opinion in Neurobiology, vol.10, pp.370-374, 2000.

M. Yano, J. A. Beverley, and H. Steiner, Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D 1 dopamine receptors: interhemispheric effects, Neuroscience, vol.140, pp.699-709, 2006.

M. Yano and H. Steiner, Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits, Neuroscience, vol.132, pp.855-865, 2005.

M. Yano and H. Steiner, Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides, Neuropsychopharmacology, vol.30, pp.901-915, 2005.

M. Yano and H. Steiner, Methylphenidate and cocaine: the same effects on gene regulation?, Trends in Pharmacological Sciences, vol.28, pp.588-596, 2007.

J. H. Yoo, I. Kitchen, and A. Bailey, The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?, British Journal of Pharmacology, vol.166, 1993.

J. W. Young and M. A. Geyer, Action of modafinil-increased motivation via the dopamine transporter inhibition and D 1 receptors?, Biological Psychiatry, vol.67, pp.784-787, 2010.

S. T. Young, L. J. Porrino, and M. J. Iadarola, Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic D 1 receptors, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.1291-1295, 1991.

V. Yuferov, D. Nielsen, E. Butelman, and M. J. Kreek, Microarray studies of psychostimulant-induced changes in gene expression, Addiction Biology, vol.10, pp.101-118, 2005.

L. Zhang, D. Lou, H. Jiao, D. Zhang, X. Wang et al., Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D 1 and D 3 receptors, Journal of Neuroscience, vol.24, pp.3344-3354, 2004.

J. Zhu, T. J. Spencer, L. Y. Liu-chen, J. Biederman, and P. G. Bhide, Methylphenidate and m opioid receptor interactions: a pharmacological target for prevention of stimulant abuse, Neuropharmacology, vol.61, pp.283-292, 2011.

W. Adriani, D. Leo, D. Greco, M. Rea, U. Di-porzio et al., Methylphenidate administration to adolescent rats determines plastic changes in reward-related behavior and striatal gene expression. Neuropsychopharmacology 31, J. Neurochem, vol.117, pp.470-478, 2006.

B. K. Atwood, D. A. Kupferschmidt, and D. M. Lovinger, Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum, Neuropharmacology, vol.17, pp.1083-1152, 1999.

J. D. Berke, S. E. Hyman, R. V. Bhat, and J. M. Baraban, Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems, J. Pharmacol. Exp. Ther, vol.25, pp.496-505, 1993.

J. Borycz, A. Zapata, C. Quiroz, N. D. Volkow, S. Ferr-e et al., 5-HT(1B) receptormediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats, Neuropsychopharmacology, vol.33, pp.319-346, 1994.

W. A. Carlezon, C. Konradi, N. Carrey, and M. Wilkinson, Understanding the neurobiological consequences of early exposure to psychotropic drugs: linking behavior with molecules, Neuropharmacology, vol.47, 2004.

N. Castanon, K. Scearce-levie, J. J. Lucas, B. Rocha, and R. Hen, Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists, Pharmacol. Biochem. Behav, vol.67, pp.559-566, 2000.

C. A. Crawford, S. A. Baella, C. M. Farley, M. S. Herbert, L. R. Horn et al., Early methylphenidate exposure enhances cocaine selfadministration but not cocaine-induced conditioned place preference in young adult rats, Psychopharmacology, vol.213, pp.43-52, 2011.

A. Csoka, A. Bahrick, and O. P. Mehtonen, Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors, J. Sex. Med, vol.5, pp.227-233, 2008.

C. Devroye, M. Filip, E. Przegali-nski, A. C. Mccreary, U. Spampinato et al., Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proc. Natl. Acad. Sci. U. S. A, vol.230, pp.5274-5278, 1988.

. Dsmmd, Diagnostic and Statistical Manual of Mental Disorders, 2000.

K. Eberle-wang, Z. Mikeladze, K. Uryu, and M. F. Chesselet, Pattern of expression of the serotonin 2C receptor messenger RNA in the basal ganglia of adult rats, 1997.

B. J. Everitt and T. W. Robbins, From the ventral to the dorsal striatum: devolving views of their roles in drug addiction, Neurosci. Biobehav. Rev, vol.384, 2013.

B. J. Everitt, A. Dickinson, and T. W. Robbins, The neuropsychological basis of addictive behaviour, Brain Res. Rev, vol.36, pp.129-138, 2001.

P. S. Frankel, M. E. Alburges, L. Bush, G. R. Hanson, and S. J. Kish, Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users, Neuropharmacology, vol.55, pp.41-46, 2008.

R. A. Fuchs, R. K. Branham, and R. E. See, Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudateeputamen, J. Neurosci, vol.26, pp.3584-3588, 2006.

C. R. Gerfen, I. Young, and W. S. , Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study, Brain Res, vol.460, pp.161-167, 1988.

C. R. Gerfen and J. P. Bolam, The neuroanatomical organization of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.3-28, 2010.

C. R. Gerfen, J. F. Mcginty, I. Young, and W. S. , Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis, J. Neurosci, vol.11, pp.1016-1031, 1991.

C. R. Gerfen, T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase et al., D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, vol.250, pp.1429-1432, 1990.

H. Greely, B. Sahakian, J. Harris, R. C. Kessler, M. Gazzaniga et al., A translational profiling approach for the molecular characterization of CNS cell types, Cocaine increases 5-HT1B mRNA in rat nucleus accumbens shell neurons, vol.456, pp.444-449, 2007.

K. A. Horner, D. H. Adams, G. R. Hanson, and K. A. Keefe, Blockade of stimulantinduced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion, Neuroscience, vol.131, pp.67-77, 2005.

D. Hoyer, D. E. Clarke, J. R. Fozard, P. R. Hartig, G. R. Martin et al., International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin), Pharmacol. Rev, vol.46, pp.157-203, 1994.

Y. L. Hurd and M. Herkenham, Molecular alterations in the neostriatum of human cocaine addicts, Synapse, vol.13, pp.357-369, 1993.

S. E. Hyman and E. J. Nestler, Initiation and adaptation: a paradigm for understanding psychotropic drug action, Am. J. Psychiatry, vol.153, pp.151-162, 1996.

M. Ishii, Y. Tatsuzawa, A. Yoshino, and S. Nomura, Serotonin syndrome induced by augmentation of SSRI with methylphenidate, Psychiatry Clin. Neurosci, vol.62, p.246, 2008.

L. Iversen, Neurotransmitter transporters and their impact on the development of psychopharmacology, Br. J. Pharmacol, vol.147, pp.82-88, 2006.

J. P. Jedynak, J. M. Uslaner, J. A. Esteban, and T. E. Robinson, Methamphetamineinduced structural plasticity in the dorsal striatum, Eur. J. Neurosci, vol.25, pp.847-853, 2007.

Y. Kim, M. A. Teylan, M. Baron, A. Sands, A. C. Nairn et al., Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens, Proc. Natl. Acad. Sci. U. S. A, vol.106, 2009.

S. H. Kollins, ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines, J. Atten. Disord, vol.12, pp.115-125, 2008.

R. Kuczenski and D. S. Segal, Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine, 1997.

H. Lavretsky, M. D. Kim, A. Kumar, and C. F. Reynolds, Combined treatment with methylphenidate and citalopram for accelerated response in the elderly: an open trial, J. Clin. Psychiatry, vol.68, 2003.

L. Poul, E. Boni, C. Hanoun, N. Laporte, A. M. Laaris et al., Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology 39, 110e122, Front. Neuroanat, vol.5, p.41, 2000.

J. J. Lucas, L. Segu, and R. Hen, 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935, Mol. Pharmacol, vol.51, pp.755-763, 1997.

E. M. Marco, W. Adriani, L. A. Ruocco, R. Canese, A. G. Sadile et al., Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure, Neurosci. Biobehav. Rev, vol.35, pp.1722-1739, 2011.

M. Marinelli, M. Barrot, H. Simon, C. Oberlander, A. Dekeyne et al., The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution, Eur. J. Neurosci, vol.10, pp.577-591, 1990.

B. J. Morris, S. Reimer, V. Hollt, and A. Herz, Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway, Brain Res, vol.464, pp.15-22, 1988.

C. P. Muller, J. P. Huston, J. L. Neisewander, T. H. Cheung, and N. S. Pentkowski, Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: implications for medications development, Trends Pharmacol. Sci, vol.27, pp.301-319, 2006.

J. C. Nelson, E. J. Nestler, W. A. Carlezon, J. F. Neumaier, R. A. Mcdevitt et al., Augmentation strategies in the treatment of major depressive disorder. Recent findings and current status of augmentation strategies, Biol. Psychiatry, vol.12, pp.10078-10089, 1998.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

N. S. Pentkowski, T. H. Cheung, W. A. Toy, M. D. Adams, J. F. Neumaier et al., Effects of 5-HT1B receptor ligands microinjected into the ventral tegmental area on the locomotor and sensitizating effects of cocaine in rats, Eur. Neuropsychopharmacol, vol.72, pp.87-94, 2004.

J. L. Rushton, J. T. Whitmire, D. J. Safer, J. M. Zito, and S. Dosreis, Pediatric stimulant and selective serotonin reuptake inhibitor prescription trends: 1992 to, NSDUH Series H-44, vol.155, pp.12-4713, 1998.

S. Schenk and S. Izenwasser, Pretreatment with methylphenidate sensitizes rats to the reinforcing effects of cocaine, Pharmacol. Biochem. Behav, vol.72, pp.651-657, 2002.

R. E. See, J. C. Elliott, and M. W. Feltenstein, The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats, Psychopharmacology, vol.194, pp.321-331, 2007.

D. S. Segal, R. Kuczenski, T. S. Shippenberg, A. Zapata, and V. I. Chefer, Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile, J. Pharmacol. Exp. Ther, vol.291, pp.306-321, 1999.

R. Spanagel, A. Herz, T. S. Shippenberg, R. Spangler, Y. Zhou et al., Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.139-142, 1992.

T. J. Spencer, ADHD and comorbidity in childhood, J. Clin. Psychiatry, vol.67, pp.27-31, 2006.

H. Steiner, Psychostimulant-induced gene regulation in corticostriatal circuits, Handbook of Basal Ganglia Structure and Function, pp.501-525, 2010.

H. Steiner and C. R. Gerfen, Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum, J. Neurosci, vol.13, pp.5066-5081, 1993.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Exp. Brain Res, vol.123, pp.60-76, 1998.

H. Steiner and C. R. Gerfen, Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons, Neuroscience, vol.88, pp.795-810, 1999.

H. Steiner and S. T. Kitai, Regulation of rat cortex function by D1 dopamine receptors in the striatum, J. Neurosci, vol.20, pp.5449-5460, 2000.

H. Steiner and V. Van-waes, Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants, Prog. Neurobiol, vol.100, pp.60-80, 2013.

H. Steiner, V. Van-waes, M. Marinelli, D. J. Surmeier, W. Song et al., Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use of cognitive enhancers?, Biol. Psychiatry, vol.67, pp.6579-6591, 1996.

J. M. Swanson, N. D. Volkow, V. Van-waes, J. Beverley, M. Marinelli et al., Fluoxetine potentiation of methylphenidate-induced neuropeptide expression in the striatum occurs selectively in direct pathway (striatonigral) neurons, Eur. J. Neurosci, vol.453, 2008.

L. J. Vanderschuren, P. Di-ciano, and B. J. Everitt, Involvement of the dorsal striatum in cue-controlled cocaine seeking, J. Neurosci, vol.25, pp.8665-8670, 2005.

M. M. Voigt, D. J. Laurie, P. H. Seeburg, and A. Bach, Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor, 1991.

N. D. Volkow, G. J. Wang, J. S. Fowler, J. Logan, D. Franceschi et al., Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications, Brain Res, vol.10, pp.25-35, 1996.

J. Q. Wang and J. F. Mcginty, D1 and D2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine, Synapse, vol.22, pp.114-122, 1996.

B. L. Warren, S. D. Iñiguez, L. F. Alcantara, K. N. Wright, E. M. Parise et al., Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward-and moodrelated stimuli and disrupts ventral tegmental area gene expression in adulthood, Eur. Neuropsychopharmacol, vol.31, pp.658-671, 2003.

T. E. Wilens, L. A. Adler, J. Adams, S. Sgambati, J. Rotrosen et al., Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context, Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides, vol.47, pp.901-915, 2003.

M. Yano and H. Steiner, Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits, Neuroscience, vol.132, pp.855-865, 2005.

M. Yano and H. Steiner, Methylphenidate and cocaine: the same effects on gene regulation?, Trends Pharmacol. Sci, vol.28, pp.588-596, 2007.

M. Yano, J. A. Beverley, and H. Steiner, Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects, Neuroscience, vol.140, pp.699-709, 2006.

H. H. Yin and B. J. Knowlton, The role of the basal ganglia in habit formation, Nat. Rev. Neurosci, vol.7, pp.464-476, 2006.

R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends Neurosci, vol.12, pp.366-375, 1989.

G. E. Alexander, M. D. Crutcher, and M. R. Delong, Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic, functions. Prog. Brain Res, vol.85, pp.119-146, 1990.

G. E. Alexander, M. R. Delong, and P. L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci, vol.9, pp.357-381, 1986.

S. L. Andersen, M. Rutstein, J. M. Benzo, J. C. Hostetter, and M. H. Teicher, Sex differences in dopamine receptor overproduction and elimination, Neuroreport, vol.8, pp.1495-1498, 1997.

J. M. Brotchie, CB1 cannabinoid receptor signalling in Parkinson's disease, Curr. Opin. Pharmacol, vol.3, pp.54-61, 2003.

L. L. Brown, D. M. Smith, and L. M. Goldbloom, Organizing principles of cortical integration in the rat neostriatum: corticostriate map of the body surface is an ordered lattice of curved laminae and radial points, J. Comp. Neurol, vol.392, pp.468-488, 1998.

P. Casadio, C. Fernandes, R. M. Murray, D. Forti, and M. , Cannabis use in young people: the risk for schizophrenia, Neurosci. Biobehav. Rev, vol.35, pp.1779-1787, 2011.

M. R. Delong, Primate models of movement disorders of basal ganglia origin, Trends Neurosci, vol.13, pp.281-285, 1990.

M. Egertová and M. R. Elphick, Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1, J. Comp. Neurol, vol.422, pp.159-171, 2000.

I. Freiman, A. Anton, H. Monyer, M. J. Urbanski, and B. Szabo, Analysis of the effects of cannabinoids on identified synaptic connections in the caudateputamen by paired recordings in transgenic mice, J. Physiol, vol.575, pp.789-806, 2006.

T. F. Freund, I. Katona, and D. Piomelli, Role of endogenous cannabinoids in synaptic signaling, Physiol. Rev, vol.83, pp.1017-1066, 2003.

F. R. Fusco, A. Martorana, C. Giampà, Z. De-march, D. Farini et al., Immunolocalization of CB1 receptor in rat striatal neurons: a confocal microscopy study, Synapse, vol.53, pp.159-167, 2004.

C. R. Gerfen and J. P. Bolam, The neuroanatomical organization of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.3-28, 2010.

A. M. Graybiel and S. L. Rauch, Toward a neurobiology of obsessive-compulsive disorder, Neuron, vol.28, pp.343-347, 2000.

H. J. Groenewegen, H. W. Berendse, J. G. Wolters, and A. H. Lohman, The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization, Prog. Brain Res, vol.85, pp.95-116, 1990.

L. Heng, J. A. Beverley, H. Steiner, and K. Y. Tseng, Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas, Synapse, vol.65, pp.278-286, 2011.

M. Herkenham, A. B. Lynn, B. R. De-costa, and E. K. Richfield, Neuronal localization of cannabinoid receptors in the basal ganglia of the rat, Brain Res, vol.547, pp.267-274, 1991.

M. Herkenham, A. B. Lynn, M. R. Johnson, L. S. Melvin, B. R. De-costa et al., Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study, J. Neurosci, vol.11, pp.563-583, 1991.

M. Herkenham, A. B. Lynn, M. D. Little, M. R. Johnson, L. S. Melvin et al., Cannabinoid receptor localization in brain, Proc. Natl. Acad. Sci. U.S.A, vol.87, pp.1932-1936, 1990.

A. F. Hoffman and C. R. Lupica, Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids, J. Neurophysiol, vol.85, pp.72-83, 2001.

A. G. Hohmann and M. Herkenham, Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study, Synapse, vol.37, pp.71-80, 2000.

S. E. Hyman and E. J. Nestler, Initiation and adaptation: a paradigm for understanding psychotropic drug action, Am. J. Psychiatry, vol.153, pp.151-162, 1996.

A. J. Irving, A. A. Coutts, J. Harvey, M. G. Rae, K. Mackie et al., Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons, Neuroscience, vol.98, pp.253-262, 2000.

D. Joel and I. Weiner, The organization of the basal gangliathalamocortical circuits: open interconnected rather than closed segregated, Neuroscience, vol.63, pp.363-379, 1994.

D. Joel and I. Weiner, The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum, Neuroscience, vol.96, pp.451-474, 2000.

B. Johansson, V. Georgiev, and B. B. Fredholm, Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors, Neuroscience, vol.80, pp.1187-1207, 1997.

M. D. Julian, A. B. Martin, B. Cuellar, F. Rodriguez-de-fonseca, M. Navarro et al., Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia, Neuroscience, vol.119, pp.309-318, 2003.

D. Koethe, C. Hoyer, and F. M. Leweke, The endocannabinoid system as a target for modelling psychosis, Psychopharmacology (Berl.), vol.206, pp.551-561, 2009.

A. C. Kreitzer and W. G. Regehr, Retrograde signaling by endocannabinoids, Curr. Opin. Neurobiol, vol.12, pp.324-330, 2002.

Y. Kubota and Y. Kawaguchi, Dependence of GABAergic synaptic areas on the interneuron type and target size, J. Neurosci, vol.20, pp.375-386, 2000.

D. M. Lovinger, M. I. Davis, and R. M. Costa, Endocannabinoid signaling in the striatum, Handbook of Basal Ganglia Structure and Function, pp.167-186, 2010.

P. Mailleux and J. J. Vanderhaeghen, Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry, Neuroscience, vol.48, pp.655-668, 1992.

O. J. Manzoni and J. Bockaert, , 2001.

G. Marsicano and B. Lutz, Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain, Eur. J. Neurosci, vol.11, pp.4213-4225, 1999.

A. B. Martín, E. Fernandez-espejo, B. Ferrer, M. A. Gorriti, A. Bilbao et al., Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors, Neuropsychopharmacology, vol.33, pp.1667-1679, 2008.

L. A. Matsuda, T. I. Bonner, and S. J. Lolait, Localization of cannabinoid receptor mRNA in rat brain, J. Comp. Neurol, vol.327, pp.535-550, 1993.

S. E. Mccallum and J. F. Cheer, Dopamine-endocannabinoid interactions in Parkinson's disease, Cortico-Subcortical Dynamics in Parkinson's Disease, pp.185-205, 2009.

N. A. Mcdonald, C. M. Henstridge, C. N. Connolly, and A. J. Irving, An essential role for constitutive endocytosis, but not activity, in the axonal targeting of the CB1 cannabinoid receptor, Mol. Pharmacol, vol.71, pp.976-984, 2007.

A. J. Mcgeorge and R. L. Faull, The organization of the projection from the cerebral cortex to the striatum in the rat, Neuroscience, vol.29, pp.503-537, 1989.

D. E. Oorschot, Cell types in the different nuclei of the basal ganglia, Handbook of Basal Ganglia Structure and Function, pp.63-74, 2010.

A. Parent and L. N. Hazrati, Functional anatomy of the basal ganglia. I. The cortico-basal gangliathalamo-cortical loop, Brain Res. Rev, vol.20, pp.91-127, 1995.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

R. L. Reep, J. L. Cheatwood, C. , and J. V. , The associative striatum: organization of cortical projections to the dorsocentral striatum in rats, J. Comp. Neurol, vol.467, pp.271-292, 2003.

R. L. Reep, J. V. Corwin, A. Hashimoto, and R. T. Watson, Efferent connections of the rostral portion of medial agranular cortex in rats, Brain Res. Bull, vol.19, pp.203-221, 1987.

J. J. Rodriguez, K. Mackie, and V. M. Pickel, Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat caudate putamen nucleus, J. Neurosci, vol.21, pp.823-833, 2001.

J. Romero, I. Lastres-becker, R. De-miguel, F. Berrendero, J. A. Ramos et al., The endogenous cannabinoid system and the basal ganglia. Biochemical, pharmacological, and therapeutic aspects, Pharmacol. Ther, vol.95, pp.137-152, 2002.

H. Steiner, Psychostimulantinduced gene regulation in corticostriatal circuits, Handbook of Basal Ganglia Structure and Function, pp.501-525, 2010.

H. Steiner, T. I. Bonner, A. M. Zimmer, S. T. Kitai, and A. Zimmer, Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.5786-5790, 1999.

B. Szabo and E. Schlicker, Effects of cannabinoids on neurotransmission, Handb. Exp. Pharmacol, vol.168, pp.327-365, 2005.

F. I. Tarazi, E. C. Tomasini, and R. J. Baldessarini, Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study, Dev. Neurosci, vol.21, pp.43-49, 1999.

M. H. Teicher, S. L. Andersen, and J. C. Hostetter, Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens, Brain Res. Dev. Brain Res, vol.89, pp.167-172, 1995.

A. M. Thomson, Facilitation, augmentation and potentiation at central synapses, Trends Neurosci, vol.23, pp.305-312, 2000.

M. Uchigashima, M. Narushima, M. Fukaya, I. Katona, M. Kano et al., Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum, Eur. J. Pharmacol, vol.27, pp.133-150, 2003.

V. Van-waes, K. Y. Tseng, and H. Steiner, GPR88 -a putative signaling molecule predominantly expressed in the striatum: cellular localization and developmental regulation, Basal Ganglia, vol.1, pp.83-89, 2011.

I. Willuhn, W. Sun, and H. Steiner, Topography of cocaineinduced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context, Eur. J. Neurosci, vol.17, pp.1053-1066, 2003.

C. J. Wilson, GABAergic inhibition in the neostriatum, Prog. Brain Res, vol.160, pp.91-110, 2007.

J. Wiskerke, T. Pattij, A. N. Schoffelmeer, D. Vries, and T. J. , The role of CB1 receptors in psychostimulant addiction, Addict. Biol, vol.13, pp.225-238, 2008.

M. Yano and H. Steiner, Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on cfos, substance P and opioid peptides, Neuropsychopharmacology, vol.30, pp.901-915, 2005.

, All rights reserved, 2011.

G. E. Alexander, M. R. Delong, and P. L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu Rev Neurosci, vol.9, pp.357-81, 1986.

R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends Neurosci, vol.12, pp.366-75, 1989.

M. R. Delong, Primate models of movement disorders of basal ganglia origin, Trends Neurosci, vol.13, pp.281-286, 1990.

S. E. Hyman and E. J. Nestler, Initiation and adaptation: a paradigm for understanding psychotropic drug action, Am J Psychiatry, vol.153, pp.151-62, 1996.

T. W. Robbins, S. Granon, J. L. Muir, F. Durantou, A. Harrison et al., Neural systems underlying arousal and attention. Implications for drug abuse, Ann NY Acad Sci, vol.846, pp.222-259, 1998.

A. M. Graybiel and S. L. Rauch, Toward a neurobiology of obsessive-compulsive disorder, Neuron, vol.28, pp.343-350, 2000.

M. V. Solanto, Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research, Behav Brain Res, vol.130, pp.65-71, 2002.

D. E. Oorschot, Cell types in the different nuclei of the basal ganglia, Handbook of basal ganglia structure and function, pp.63-74, 2010.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Exp Brain Res, vol.123, pp.60-76, 1998.

D. J. Surmeier, J. Ding, M. Day, Z. Wang, and W. Shen, D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons, Trends Neurosci, vol.30, pp.228-263, 2007.

M. A. Cenci, Molecular mechanisms of l-DOPA-induced dyskinesia, Handbook of basal ganglia structure and function, pp.625-665, 2010.

K. Mizushima, Y. Miyamoto, F. Tsukahara, M. Hirai, Y. Sakaki et al., A novel Gprotein-coupled receptor gene expressed in striatum, Genomics, vol.69, pp.314-335, 2000.

R. Massart, J. P. Guilloux, V. Mignon, P. Sokoloff, and J. Diaz, Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents, Eur J Neurosci, vol.30, pp.397-414, 2009.

A. Ghate, K. Befort, J. A. Becker, D. Filliol, C. Bole-feysot et al., Identification of novel striatal genes by expression profiling in adult mouse brain, Neuroscience, vol.146, pp.1182-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189988

S. F. Logue, S. M. Grauer, J. Paulsen, R. Graf, N. Taylor et al., GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders?, Mol Cell Neurosci, vol.42, pp.438-485, 2009.

I. Willuhn, W. Sun, and H. Steiner, Topography of cocaine-induced gene regulation in the rat striatum: Relationship to cortical inputs and role of behavioural context, Eur J Neurosci, vol.17, pp.1053-66, 2003.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 1998.

M. Herkenham, A. B. Lynn, M. R. Johnson, L. S. Melvin, B. R. De-costa et al., Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study, J Neurosci, vol.11, pp.563-83, 1991.

H. Steiner, T. I. Bonner, A. M. Zimmer, S. T. Kitai, and A. Zimmer, Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice, Proc Natl Acad Sci, vol.96, pp.5786-90, 1999.

A. Mansour, J. H. Meador-woodruff, J. R. Bunzow, O. Civelli, H. Akil et al., Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis, J Neurosci, vol.10, pp.2587-600, 1990.

S. R. Sesack, C. Aoki, and V. M. Pickel, Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets, J Neurosci, vol.14, pp.88-106, 1994.

B. Johansson, V. Georgiev, and B. B. Fredholm, Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors, Neuroscience, vol.80, pp.1187-207, 1997.

M. Yano and H. Steiner, Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides, Neuropsychopharmacology, vol.30, pp.901-916, 2005.

M. H. Teicher, S. L. Andersen, and J. Hostetter, Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens, Dev Brain Res, vol.89, pp.167-72, 1995.

S. L. Andersen, M. Rutstein, J. M. Benzo, J. C. Hostetter, and M. H. Teicher, Sex differences in dopamine receptor overproduction and elimination, Neuroreport, vol.8, pp.1495-1503, 1997.

F. I. Tarazi, E. C. Tomasini, and R. J. Baldessarini, Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study, Dev Neurosci, vol.21, pp.43-52, 1999.

L. Heng, J. A. Beverley, H. Steiner, and K. Y. Tseng, Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas, Synapse, vol.65, pp.278-86, 2011.

J. S. Surgand, J. Rodrigo, E. Kellenberger, and D. Rognan, A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors, Proteins, vol.62, pp.509-547, 2006.

A. Scheer, F. Fanelli, T. Costa, D. Benedetti, P. G. Cotecchia et al., Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation, EMBO J, vol.15, pp.3566-78, 1996.

J. Bockaert and J. P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success, EMBO J, vol.18, pp.1723-1732, 1999.

A. R. Reyes, R. Levenson, W. Berrettini, and E. J. Van-bockstaele, Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons, Brain Res, vol.1358, pp.71-80, 2010.

L. J. Bindman, O. C. Lippold, and J. W. Redfearn, The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting aftereffects, J Physiol, vol.172, pp.369-382, 1964.

L. J. Bindman and H. C. Richardson, Persisting changes in the firing pattern of single cortical units responding at short latency to weak somatic stimuli in the anaesthetized rat, J Physiol, vol.202, pp.53-55, 1969.

P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche et al., Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease, J Neurol Sci, vol.249, pp.31-38, 2006.

P. S. Boggio, P. Liguori, N. Sultani, L. Rezende, S. Fecteau et al., Cumulative priming effects of cortical stimulation on smoking cue-induced craving, Neurosci Lett, vol.463, pp.82-86, 2009.

A. L. Brody, M. A. Mandelkern, E. D. London, A. R. Childress, G. S. Lee et al., Brain metabolic changes during cigarette craving, Arch Gen Psychiatry, vol.59, pp.1162-1172, 2002.

A. R. Brunoni, R. Ferrucci, F. Fregni, P. S. Boggio, and A. Priori, Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings, Prog Neuropsychopharmacol Biol Psychiatry, vol.39, pp.9-16, 2012.

D. L. Due, S. A. Huettel, W. G. Hall, and D. C. Rubin, Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging, Am J Psychiatry, vol.159, pp.954-960, 2002.

J. Feil and A. Zangen, Brain stimulation in the study and treatment of addiction, Neurosci Biobehav Rev, vol.34, pp.559-574, 2010.

R. Ferrucci, M. Bortolomasi, M. Vergari, L. Tadini, B. Salvoro et al., Transcranial direct current stimulation in severe, drug-resistant major depression, J Affect Disord, vol.118, pp.215-219, 2009.

P. E. Fraser and A. C. Rosen, Transcranial direct current stimulation and behavioral models of smoking addiction, Front Psychiatry, vol.3, p.79, 2012.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal et al., Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory, Exp Brain Res, vol.166, pp.23-30, 2005.

F. Fregni, P. Liguori, S. Fecteau, M. A. Nitsche, A. Pascual-leone et al., Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cueprovoked smoking craving: a randomized, sham-controlled study, J Clin Psychiatry, vol.69, pp.32-40, 2008.

J. R. Hughes, L. F. Stead, and T. Lancaster, Antidepressants for smoking cessation, Cochrane Database Syst Rev CD000031, 2007.

S. D. Iniguez, B. L. Warren, E. M. Parise, L. F. Alcantara, B. Schuh et al., Nicotine exposure during adolescence induces a depression-like state in adulthood, Neuropsychopharmacology, vol.34, pp.1609-1624, 2009.

M. Karreman and B. Moghaddam, The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area, J Neurochem, vol.66, pp.589-598, 1996.

N. Lam and R. W. , Onset, time course and trajectories of improvement with antidepressants, Eur Neuropsychopharmacol, vol.22, issue.3, pp.492-498, 2012.

D. Liebetanz, F. Fregni, M. -. Silva, K. K. Oliveira, M. B. Amancio-dossantos et al., After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression, Neurosci Lett, vol.398, pp.85-90, 2006.

D. Liebetanz, R. Koch, S. Mayenfels, F. Konig, W. Paulus et al., Safety limits of cathodal transcranial direct current stimulation in rats, Clin Neurophysiol, vol.120, pp.1161-1167, 2009.

D. Mcbride, S. P. Barrett, J. T. Kelly, A. Aw, and A. Dagher, Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study, Neuropsychopharmacology, vol.31, pp.2728-2738, 2006.

M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-leone, Treatment of depression with transcranial direct current stimulation (tDCS): a review, Exp Neurol, vol.219, pp.14-19, 2009.

M. A. Nitsche, M. S. Nitsche, C. C. Klein, F. Tergau, J. C. Rothwell et al., Level of action of cathodal DC polarisation induced inhibition of the human motor cortex, Clin Neurophysiol, vol.114, pp.600-604, 2003.

M. A. Nitsche and W. Paulus, Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, J Physiol, vol.527, pp.633-639, 2000.

C. P. O'brien, Review. Evidence-based treatments of addiction, Philos Trans R Soc Lond B Biol Sci, vol.363, pp.3277-3286, 2008.

S. H. Ohn, C. I. Park, W. K. Yoo, M. H. Ko, K. P. Choi et al., , 2008.

, Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory, Neuroreport, vol.19, pp.43-47

G. Paxinos and K. Franklin, The mouse brain in stereotaxic coordinate, 2001.

R. D. Porsolt, L. Pichon, M. Jalfre, and M. , Depression: a new animal model sensitive to antidepressant treatments, Nature, vol.266, pp.730-732, 1977.

D. P. Purpura and J. G. Mcmurtry, Intracellular Activities and evoked potential changes during polarization of motor cortex, J Neurophysiol, vol.28, pp.166-185, 1965.

S. P. Rigonatti, P. S. Boggio, M. L. Myczkowski, E. Otta, J. T. Fiquer et al., Transcranial direct stimulation and fluoxetine for the treatment of depression, Eur Psychiatry, vol.23, pp.74-76, 2008.

C. J. Stagg and M. A. Nitsche, Physiological basis of transcranial direct current stimulation, Neuroscientist, vol.17, pp.37-53, 2011.

L. F. Stead and T. Lancaster, Combined pharmacotherapy and behavioural interventions for smoking cessation, Cochrane Database Syst Rev, vol.10, p.8286, 2012.

M. T. Taber and H. C. Fibiger, Electrical stimulation of the medial prefrontal cortex increases dopamine release in the striatum, Neuropsychopharmacology, vol.9, pp.271-275, 1993.

M. T. Taber and H. C. Fibiger, Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors, J Neurosci, vol.15, issue.5, pp.3896-3904, 1995.

A. A. Walf and C. A. Frye, The use of the elevated plus maze as an assay of anxiety-related behavior in rodents, Nature Protocols, vol.2, pp.322-328, 2007.

S. J. Wilson, M. A. Sayette, and J. A. Fiez, Prefrontal responses to drug cues: a neurocognitive analysis, Nat Neurosci, vol.7, pp.211-214, 2004.

T. Zaehle, P. Sandmann, J. D. Thorne, L. Jancke, and C. S. Herrmann, Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence, BMC Neurosci, vol.12, issue.2, 2011.

D. Bennabi, S. Pedron, E. Haffen, J. Monnin, Y. Peterschmitt et al., Transcranial direct current stimulation for memory enhancement: from clinical research to animal models, Front Syst Neurosci, vol.8, p.159, 2014.

J. D. Berke and S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, vol.25, pp.515-532, 2000.

M. T. Berlim, F. Van-den-eynde, and Z. J. Daskalakis, Clinical utility of transcranial direct current stimulation (tDCS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials, J Psychiatr Res, vol.47, pp.1-7, 2013.

L. J. Bindman, O. C. Lippold, and J. W. Redfearn, The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting aftereffects, J Physiol, vol.172, pp.369-382, 1964.

P. S. Boggio, N. Sultani, S. Fecteau, L. Merabet, T. Mecca et al., Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study, Drug Alcohol Depend, vol.92, pp.55-60, 2008.

P. S. Boggio, P. Liguori, N. Sultani, L. Rezende, S. Fecteau et al., Cumulative priming effects of cortical stimulation on smoking cue-induced craving, Neurosci Lett, vol.463, pp.82-86, 2009.

A. R. Brunoni, R. Ferrucci, F. Fregni, P. S. Boggio, and A. Priori, Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings, Prog Neuropsychopharmacol Biol Psychiatry, vol.39, pp.9-16, 2012.

J. A. Camprodon, J. Martinez-raga, A. , M. Shih, M. C. Pascual-leone et al., One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving, Drug Alcohol Depend, vol.86, pp.91-94, 2007.

C. L. Conti and E. M. Nakamura-palacios, Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts, Brain Stimul, vol.7, pp.130-132, 2014.

L. Cotterly, J. A. Beverley, M. Yano, and H. Steiner, Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a, Eur J Neurosci, vol.25, pp.3617-3628, 2007.

B. J. Everitt and T. W. Robbins, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion, Nat Neurosci, vol.8, pp.1481-1489, 2005.

S. Fecteau, S. Agosta, A. Hone-blanchet, F. Fregni, P. Boggio et al., Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study, Drug Alcohol Depend, vol.140, pp.78-84, 2014.

J. Feil and A. Zangen, Brain stimulation in the study and treatment of addiction, Neurosci Biobehav Rev, vol.34, pp.559-574, 2010.

R. Ferrucci, M. Bortolomasi, M. Vergari, L. Tadini, B. Salvoro et al., Transcranial direct current stimulation in severe, drug-resistant major depression, J Affect Disord, vol.118, pp.215-219, 2009.

F. Fregni, P. Liguori, S. Fecteau, M. A. Nitsche, A. Pascual-leone et al., Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cueprovoked smoking craving: a randomized, sham-controlled study, J Clin Psychiatry, vol.69, pp.32-40, 2008.

T. S. Hnasko, B. N. Sotak, and R. D. Palmiter, Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin, J Neurosci, vol.27, pp.12484-12488, 2007.

A. Ilango, A. J. Kesner, K. L. Keller, G. D. Stuber, A. Bonci et al., Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion, J Neurosci, vol.34, pp.817-822, 2014.

S. D. Iniguez, L. M. Riggs, S. J. Nieto, K. N. Wright, N. N. Zamora et al., Fluoxetine exposure during adolescence increases preference for cocaine in adulthood, Sci Rep, vol.5, p.15009, 2015.

J. Klauss, P. Pinheiro, L. C. , S. Merlo, B. L. De-almeida-correia-santos et al., A randomized controlled trial of targeted prefrontal cortex modulation with tDCS in patients with alcohol dependence, Int J Neuropsychopharmacol, vol.17, pp.1793-1803, 2014.

E. Knapska and L. Kaczmarek, A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/ TIS8/ZENK?, Prog Neurobiol, vol.74, pp.183-211, 2004.

M. F. Kuo, W. Paulus, and M. A. Nitsche, Therapeutic effects ofnon-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases, Neuroimage, vol.85, pp.948-960, 2014.

S. Lammel, B. K. Lim, C. Ran, K. W. Huang, M. J. Betley et al., Input-specific control of reward and aversion in the ventral tegmental area, Nature, vol.491, pp.212-217, 2012.

J. L. Lee, D. Ciano, P. Thomas, K. L. Everitt, and B. J. , Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior, Neuron, vol.47, pp.795-801, 2005.

C. Miniussi, S. F. Cappa, L. G. Cohen, A. Floel, F. Fregni et al., Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation, Brain Stimul, vol.1, pp.326-336, 2008.

M. A. Nitsche and W. Paulus, Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, J Physiol, vol.527, pp.633-639, 2000.

M. A. Nitsche, S. Doemkes, T. Karakose, A. Antal, D. Liebetanz et al., Shaping the effects of transcranial direct current stimulation of the human motor cortex, J Neurophysiol, vol.97, pp.3109-3117, 2007.

G. Paxinos and K. Franklin, The Mouse Brain in Stereotaxic Coordinate, 2001.

S. Pedron, J. Monnin, E. Haffen, D. Sechter, and V. Van-waes, Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption, Neuropsychopharmacology, vol.39, pp.981-988, 2014.

E. Politi, E. Fauci, A. Santoro, and E. Smeraldi, Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving, Am J Addict, vol.17, pp.345-346, 2008.

D. P. Purpura and J. G. Mcmurtry, Intracellular activities and evoked potential changes during polarization of motor cortex, J Neurophysiol, vol.28, pp.166-185, 1965.

W. Renthal and E. J. Nestler, Epigenetic mechanisms in drug addiction, Trends Mol Med, vol.14, pp.341-350, 2008.

S. P. Rigonatti, P. S. Boggio, M. L. Myczkowski, E. Otta, J. T. Fiquer et al., Transcranial direct stimulation and fluoxetine for the treatment of depression, Eur Psychiatry, vol.23, pp.74-76, 2008.

C. J. Stagg and M. A. Nitsche, Physiological basis of transcranial direct current stimulation, Neuroscientist, vol.17, pp.37-53, 2011.

H. Steiner and V. Van-waes, Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants, Prog Neurobiol, vol.100, pp.60-80, 2013.

F. R. Theberge, A. L. Milton, D. Belin, J. L. Lee, and B. J. Everitt, The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation, Learn Mem, vol.17, pp.444-453, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00583006

C. T. Unal, J. A. Beverley, I. Willuhn, and H. Steiner, Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a, Eur J Neurosci, vol.29, pp.1615-1626, 2009.

E. Valjent, B. Aubier, A. G. Corbille, K. Brami-cherrier, J. Caboche et al., Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine, J Neurosci, vol.26, pp.4956-4960, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085672

V. Van-waes, J. Beverley, M. Marinelli, and H. Steiner, Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum, Eur J Neurosci, vol.32, pp.435-447, 2010.

V. Van-waes, M. Vandrevala, J. Beverley, and H. Steiner, Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a, Addict Biol, vol.19, pp.986-995, 2014.

Q. D. Walker, J. Cabassa, K. A. Kaplan, S. T. Li, J. Haroon et al., Sex differences in cocaine-stimulated motor behavior: disparate effects of gonadectomy, Neuropsychopharmacology, vol.25, pp.118-130, 2001.

I. Willuhn, W. Sun, and H. Steiner, Topography of cocaineinduced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context, Eur J Neurosci, vol.17, pp.1053-1066, 2003.

R. A. Wise, Roles for nigrostriatal-not just mesocorticolimbic-dopamine in reward and addiction, Trends Neurosci, vol.32, pp.517-524, 2009.

M. Yano and H. Steiner, Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits, Neuroscience, vol.132, pp.855-865, 2005.

Y. Zhang, J. R. Mantsch, S. D. Schlussman, A. Ho, and M. J. Kreek, Conditioned place preference after single doses or "binge" cocaine in C57BL/6J and 129/J mice, Pharmacol Biochem Behav, vol.73, pp.655-662, 2002.