, intitulée Inéquation variationnelle et Application à la mécanique du contact et commune au laboratoire de Mathématique de Besançon et de l'Insa-Lyon

, Département Mécanique du solide et de l'endommagement

A. Münch, Three dimensional crack growth in layered composites media : curved interfaces and bonded joints, pp.1-237, 2002.

F. Ammar-khodja, G. Geymonat, and A. Münch, On the exact controllability of a system of mixed order with essential spectrum, Paris Série Mathématique, vol.346, pp.629-634, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00482879

M. Asch and A. Münch, Uniformly controllable schemes for the wave equation on the unit square. A paraitre dans, Journal of Optimization. Theory and Applications
URL : https://hal.archives-ouvertes.fr/hal-00482826

C. Castro, S. Micu, and A. Münch, Boundary controllability of a semi-discrete wave equation on the unit square with mixed finite elements, IMA J. Numerical Analysis, vol.28, pp.186-214, 2008.

D. Chapelle, C. Mardare, and A. Münch, Asymptotic consideration shedding light on the incompressible shell models, J. of Elasticity, vol.76, pp.199-246, 2004.

P. Hild, A. Münch, and Y. Ousset, On the control of crack growth in elastic media, Paris Série Mécanique, vol.336, pp.422-427, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00466474

P. Hild, A. Münch, and Y. Ousset, On the active control of crack growth in elastic media. A paraître dans, Computer Methods in Applied Mechanics and Engineering, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00466474

F. Krasucki, A. Münch, and Y. Ousset, Asymptotic analysis of a bonded joint in nonlinear elasticity, Paris Série IIb, vol.329, pp.429-434, 2001.

F. Krasucki, A. Münch, and Y. Ousset, Numerical simulation of debonding of adhesively bonded joints, Int. J. of Solids and Structures, vol.39, pp.6355-6383, 2002.

F. Krasucki, A. Münch, and Y. Ousset, Mathematical analysis of nonlinear joints models, Math. Models Meth. Appl. Sci, vol.14, pp.535-556, 2004.

F. Maestre, A. Münch, and P. Pedregal, A spatio-temporal design problem for a damped wave equation, SIAM Journal of Applied Mathematics, vol.68, pp.109-132, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00484516

F. Maestre, A. Münch, and P. Pedregal, Optimal design under the one-dimensional wave equation. Interface and Free Boundaries Journal, vol.10, pp.87-117, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00484030

B. Miara and A. Münch, Controllability of a piezoelectric body. Theory and numerical simulation, Applied Mathematics and Optimization
URL : https://hal.archives-ouvertes.fr/hal-00482853

A. Münch, Family of implicit and controllable schemes for the 1-D wave equation, C.R. Acad. Sci, vol.339, pp.733-738, 2004.

A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation, Mathematical Modeling and Numerical Analysis, vol.39, pp.377-418, 2005.

A. Münch, Un problème d'optimisation de forme pour la contrôlabilité exacte de l'équation des ondes 2-D, C.R. Acad. Sci, vol.343, pp.213-218, 2006.

A. Münch, Optimal design of the support of the control for the 2-D wave equation : numerical investigations, Int. J. Numerical Analysis and Modeling, vol.5, pp.331-351, 2008.

A. Münch, Optimal location of the support of the control for the 1-D wave equation : numerical investigations, Computational Optimization and Applications

A. Münch, Optimal internal stabilization of a damped wave equation by a level set approach, International Journal of applied Mathematics and Computer Science, vol.19, issue.1, pp.1-25, 2009.

A. Münch and Y. Ousset, Energy release rate for a thin curvilinear beam, Paris Série IIb, vol.328, pp.471-476, 2000.

A. Münch and Y. Ousset, Numerical simulation of delamination growth in curved interfaces, Comp. Meth. Appl. Mech. Engnrg, 2002.

A. Münch and A. F. Pazoto, Uniform stabilization of a viscous numerical approximation scheme for a locally damped wave equation. Control, Optimization and Calculus of Variation, vol.13, pp.265-293, 2007.

A. Münch and A. F. Pazoto, Boundary stabilization on a nonlinear arch : Theoretical vs, Numerical Analysis.Discrete and Continuous Dynamical Systems Serie B, vol.10, issue.1, pp.197-219, 2008.

A. Münch, P. Pedregal, and F. Periago, A variational approach to a shape design problem for the wave equation, C.R. Acad. Sci, vol.343, pp.371-376, 2006.

A. Münch, P. Pedregal, and F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J. of Differential Equations, vol.231, pp.330-353, 2006.

A. Münch, P. Pedregal, and F. Periago, An optimal design problem for the stabilization of the linear system of elasticity, Arch. Rat. Mech. Anal, 2008.

A. Münch, P. Pedregal, and F. Periago, Relaxation of an optimal design problem for the Heat equation, Journal de Mathématiques Pures et Appliquées, vol.89, issue.3, pp.225-247, 2008.

A. Münch and P. Pedregal, Relaxation of an optimal design problem in fracture mechanic, En révision à Esaim : COCV, Février, 2008.

A. Münch, Exact boundary controllability of a circular arch, 2008.

F. Ammar-khodja, G. Geymonat, and A. Münch, On the exact controllability of a membrane dominated shell

F. Boyer, F. Hubert, and A. Münch, Numerical approximation of the observability constant for the heat equation

F. Ammar-khodja, S. Micu, and A. Münch, Exact controllability of a string submitted to a unilateral constraint

G. Allaire, F. Jouve, and N. Van-goethem, A level set method for the numerical simulation of damage evolution. Preprint CMAP, Ecole Polytechnique, 2007.

G. Allaire, F. Jouve, and A. M. Toader, Structural optimization using sensitivity analysis and levelset methods, J. Comp. Phys, vol.194, pp.363-393, 2004.

M. Asch and G. Lebeau, Geometrical aspects of exact controllability for the wave equation -a numerical study, ESAIM COCV, vol.3, pp.163-212, 1998.

M. Asch and G. Lebeau, The spectrum of the damped wave operator for a bounded domain in R 2, Experiment. Math, vol.12, pp.227-241, 2003.

G. Allaire, Shape optimization by the homogenization method, 2002.

E. Aranda and P. Pedregal, Constrained envelope for a general class of design problems. Disc, Cont. Dyn. Syst, pp.30-41, 2003.

F. D. Araruna and E. Zuazua, Controllability of the kirchhoff system for beams as limit of the mindlin-timoshenko one, SIAM Control and Optimization, vol.47, 1909.

H. Bufler and K. Baitinger, Non-linear shell dynamics based on a mixed variational formulation, Computational Mechanics, vol.2, pp.197-213, 1987.

M. Bernadou, P. G. Ciarlet, and B. Miara, Existence theorems for two-dimensional linear shell theory, J. Elasticity, vol.34, pp.111-138, 1994.

A. Bensoussan, On the general theory of exact controllability for skew symmetric operators, Acta Appl. Math, vol.20, issue.3, pp.197-229, 1990.

H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech, vol.22, pp.465-472, 1955.

H. T. Banks, K. Ito, and C. Wang, Exponentially stable approximations of weakly damped wave equations, Internat. Ser. Numer. Math, vol.100, pp.1-33, 1991.

M. Burger and S. J. Osher, A survey on level set methods for inverse problems and optimal design, European Journal of Applied Mathematics, vol.16, pp.263-301, 2005.

F. Bourquin, Approximation theory for the problem of exact controllability of the wave equation with boundary control, Second international Conference on Mathematical and Numerical Aspects of Wave Propagation, pp.103-112, 1993.

H. D. Bui, Mécanique de la rupture fragile, 1983.

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interface and free boundaries, vol.5, pp.301-329, 2003.

D. Chapelle and K. J. Bathe, The finite element analysis of shells -Fundamentals. Computational Fluid and Solids Mechanics, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00839738

C. Castro and S. J. Cox, Achieving arbitrarily large decay in the damped wave equation, Siam J. Control Optim, vol.6, pp.1748-1755, 2001.

S. Chai, Y. Guo, and P. F. Yao, Boundary feedback stabilization of shallow shells, SIAM J. Control and Opt, vol.42, pp.239-259, 2003.

P. G. Ciarlet, Mathematical elasticity, Theory of Shell. Studies in Mathematics and its applications, vol.III, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01077424

J. Coron, Control and nonlinearity. Mathematical surveys and monographs, vol.136, 2007.

J. Cagnol and J. P. Zolesio, Shape derivative in the wave equation with dirichlet boundary condition, J. Diff. Eq, vol.158, pp.175-210, 1999.

B. Dacorogna, Direct methods in the calculus of variations, 1989.

P. Destuynder, M. Djaoua, and S. Lescure, Quelques remarques sur la mécanique de la rupture élastique, J. Meca. Theor. Appli, vol.2, pp.113-135, 1983.

P. Destuynder, An approach to crack propagation control in structural dynamics, C.R.Acad. Sci. Paris, Série II, vol.306, pp.953-956, 1988.

P. Destuynder, Remarks on a crack propagation control for stationary loaded structures, C.R.Acad. Sci. Paris, Série IIb, vol.308, pp.697-701, 1989.

P. Destuynder, Computation of an active control in fracture mechanics using finite elements, Eur. J. Mech., A/Solids, vol.9, pp.133-141, 1990.

P. Destuynder, Modélisation des coques élastiques minces, 1990.

P. Destuynder, Stationnary hum method in control theory and approximation, pp.1-14, 2005.

P. Destuynder, Vibrations des structures et des systèmes couplés, 2007.

A. Donoso and P. Pedregal, Optimal design of 2-D conducting graded materials by minimizing quadratic funtionals in the field, Struc. Multidisc Optim, pp.360-367, 2005.

M. C. Delfour and J. P. Zolesio, Shapes and Geometries -Analysis, Differential Calculus and Optimization, 2001.

S. Ervedoza, C. Zheng, and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Functional Analysis, vol.254, pp.3037-3078, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00681702

E. Fernández-cara and E. Zuazua, On the history and perspectives of control theory. Matapli, vol.74, pp.47-73, 2004.

I. Fonseca and G. Leoni, Modern Methods in the Calculs of Variations : L p spaces, Springer Monographs in Mathematics, 2007.

G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimisation problem, J. Mech. Phys. Solids, vol.46, pp.1319-1342, 1998.

P. Freitas, Optimizing the rate of decay of solutions of the wave equation using genetic algorithms : a counterexample to the constant damping conjecture, Siam J. Control. Optim, vol.37, pp.376-387, 1998.

G. Grubb and G. Geymonat, The essential spectrum of elliptic systems of mixed order, Math. Ann, vol.227, pp.247-276, 1977.

S. Garreau, P. Guillaume, and M. Masmoudi, The topological asymptotic for pde systems : the elasticity case, SIAM J. Control Optim, vol.39, pp.1756-1778, 2001.

R. Glowinski, W. Kinton, and M. F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation, Int. J. Numer. Methods. Eng, vol.27, pp.623-636, 1989.

R. Glowinski and J. L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numerica, pp.159-333, 1996.

R. Glowinski, C. H. Li, and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation (i). dirichlet controls : Description of the numerical methods, Jap. J. Appl. Math, vol.7, pp.1-76, 1990.

R. Glowinski, Ensuring well-posedness by analogy ; stokes problem and boundary control for the wave equation, J. Comput. Phys, vol.103, pp.189-221, 1991.

G. Geymonat, P. Loreti, and V. Valente, Contrôlabilité exacte d'un modèle de coque mince, C.R. Acad. Sci Série I, vol.313, pp.81-86, 1991.

G. Geymonat, P. Loreti, and V. Valente, Exact controllability of a shallow shell model, International Series of Numerical Mathematics, vol.107, pp.85-97, 1992.

G. Geymonat, P. Loreti, and V. Valente, Exact controllability of thin elastic hemispherical shell via harmonic analysis. Boundary value problems for partial differential equations and applications, 1993.

G. Geymonat, P. Loreti, and V. Valente, Spectral problems for thin shells and exact controllability, Spectral Analysis of Complex structures, vol.49, 1995.

Y. Grabovsky, Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals, Advan. Appl. Math, pp.683-704, 2001.

A. A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London, vol.46, pp.163-198, 1920.

P. Grisvard, Singularities in boundary value problems, Research in Applied Mathematics Springer-Verlag, 1992.

G. Geymonat and V. Valente, A noncontrollability result for systems of mixed order, SIAM J. Control Optim, vol.39, pp.661-672, 2000.

G. Geymonat and V. Valente, Relaxed exact controllability and asymptotic limit for thin shells, Differential and Integral Equations, vol.14, pp.1267-1280, 2001.

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portug. Math, vol.46, pp.245-258, 1989.

A. Haraux, A generalized internal control for the wave equation in a rectangle, J. Math. Anal. Appl, vol.153, pp.190-216, 1990.

P. Hebrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Systems and control letters, vol.48, pp.199-209, 2003.

P. Hebrard and A. Henrot, A spillover phenomenon in the optimal location of actuators, Siam J. Control and Optimization, vol.44, pp.349-366, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00013870

A. Henrot and H. Maillot, Optimization of the shape and the location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, vol.3, pp.737-757, 2001.

A. Henrot and M. Pierre, Variation et Optimisation de formes -Une analyse géométrique. Mathématiques et Applications, vol.48, 2005.

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z, vol.41, pp.367-369, 1936.

L. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of wave equation, Journal of the European Mathematical Society, 2008.

K. Kappel and K. Ito, The trotter-kato theorem and approximations of pde's, Math. of Comput, vol.67, pp.21-44, 1998.

S. Kindermann, Convergence rates of the hilbert uniqueness method via tikhonov regularization, J. Optimization. Theory and Applications, vol.103, pp.657-673, 1999.

V. Komornik and P. Loreti, Fourier series in control theory, Springer Monographs in Mathematics, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00086863

V. Komornik, Exact controllability and Stabilization -The multiplier method, 1994.

D. Kinderleher and P. Pedregal, Weak convergence of integrands and the young measure representation, SIAM J. Math. Anal, vol.23, pp.1-19, 1992.

S. Krenk, Dispersion-corrected explicit integration of the wave equation, Comput. Methods. Appl. Mech. Engrg, vol.191, pp.975-987, 2001.

A. M. Khludnev and J. Sokolowski, Modelling and Control in Solids Mechanics, Studies in Mathematics and its applications, vol.122, 1997.

J. E. Lagnese, Boundary stabilization of thin plates, SIAM Stud. Appl. Math, 1989.

J. B. Leblond, Mécanique de la rupture fragile et ductile. Hermès Science, 2003.

C. Lebiedzik, Exact boundary controllability of a shallow intrinsic shell model, J. Math. Anal. Appl, vol.335, pp.584-614, 2007.

J. Lopez-gomez, On the linear damped wave equation, J. Differential Equations, vol.134, pp.26-45, 1997.

J. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, 1988.

J. E. Lagnese and J. L. Lions, Modelling analysis and control of thin plates, Recherche en Mathématiques Appliquées, vol.6, 1988.

J. Lions and E. Magenes, Problèmes aux Limites Non Homogènes, vol.1, 1968.

P. Loreti and M. Mehrenberger, An ingham type proof for a two-grid observability theorem, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01298963

I. Lasiecka and R. Triggiani, Control theory for partial differential equations : continuous and approximation theories. II. Abstract hyperbolic-like systems. Encyclopedia of Mathematics and its Applications, vol.75, 2000.

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett, vol.55, pp.597-609, 2006.

I. Lasiecka, R. Triggiani, and V. Valente, Uniform stabilization of spherical shells by boundary dissipation, Advances in differential equations, vol.4, pp.635-674, 1996.

K. A. Lurie, The problem of the effective parameters of a mixture of two isotropic dielectrics distributed in space-time and the conservation law of wave impedance in one-dimensional wave propagation, Proc. R. Soc. London A, vol.454, pp.1767-1779, 1998.

K. A. Lurie, Control of the coefficients of linear hyperbolic equations via spatio-temporal composites. in Homogenization, pp.285-315, 1999.

K. A. Lurie, A stable spatio-temporal g-closure and g m -closure of a set of isotropic dielectrics with respect to one-dimensional wave propagation, Wave Motion, vol.40, pp.95-110, 2004.

P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim, vol.35, pp.641-653, 1997.

R. Lipton and A. P. Velo, Optimal design of gradient field with applications to electrostatics, Nonlinear Partial Differential Equations and Their Applications, vol.XIV, 2002.

M. Mehrenberger, An ingham type proof for the boundary observability of a n-d wave equation, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311730

G. P. Menzala, A. F. Pazoto, and E. Zuazua, Stabilization of berger-timoshenko's equation as limit of the uniform stabilization of the von karman system of beams and plates. Mathematical modelling and Numerical Analysis, vol.36, pp.657-691, 2002.

S. Muller, Variational models for microstructure and phase transitions, Lecture Notes in Math, vol.1713, 1999.

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura ed Appl. Serie, vol.4, pp.49-68, 1977.

B. Miara and V. Valente, Exact controllability of a koiter shell by a boundary action, J. Elasticity, vol.52, pp.267-287, 1999.

G. P. Menzala and E. Zuazua, On a one-dimensional version of the dynamical marguerre-vlasov system, Bol. Soc. Bra. Mat, vol.32, pp.303-319, 2001.

S. Micu and E. Zuazua, Controllability of Partial Differential Equations, vol.64, 2004.

M. T. Niane, G. Bayili, A. Sène, and M. Sy, Is it possible to cancel singularities in a domain with corners and cracks ?, C.R. Acad. Sci, vol.343, pp.115-118, 2006.

S. D. Nigam, R. Usha, and K. Swaminathan, Divergence-free vector fields, J. Math. Phy. Sci, vol.14, pp.523-527, 1980.

M. Negreanu and E. Zuazua, Convergence of a multi-grid method for the controllability of a 1-d wave equation, C.R. Acad. Sci. Paris, Série I, vol.338, pp.413-418, 2004.

M. Negreanu and E. Zuazua, Discrete ingham inequalities and applications, C.R. Acad. Sci. Paris, Série I, vol.338, pp.281-286, 2004.

S. J. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed : algorithms based on hamilton-jacobi formulations, J. Comput. Phys, vol.79, pp.12-49, 1988.

P. , Progress in nonlinear differential equations and their applications, 1997.

P. , Variational Methods in Nonlinear Elasticity. SIAM, 2000.

P. , Constrained quasiconvexification of the square of the gradient of the state in optimal design, Quart. Appl. Math, vol.62, pp.459-470, 2004.

P. , Vector variational problems and applications to optimal design, ESAIM :COCV, vol.11, pp.357-381, 2005.

P. , Div-curl young measures and optimal design in any dimension, Rev. Univ. Complutense, vol.20, pp.239-255, 2007.

F. Periago, Optimal shape and position of the support for the internal exact control of a string. Systems and control letters, 2009.

A. L. Pellerin and E. Sanchez-palencia, Local and global vibrations of shells in membrane approximation, Spectral analysis of complex structures Travaux en Cours, vol.49, 1995.

O. Pantz and K. Trabelsi, A post-treatment of the homogenization for shape optimization, SIAM J. Control Optim, vol.47, pp.1380-1398, 2008.

J. M. Rasmussen, Boundary control of linear evolution pdes : Continuous and discrete, pp.1-179, 2004.

P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, 1983.

J. Robert and J. Thomas, Mixed and hybrid methods. Handbook of Numerical Analysis, 1989.

K. Ramdani, T. Takahashi, and M. Tucsnak, Internal stabilization of a plate in a square : the continuous and the semi-discretized problems, Journal de Mathématiques Pures et Appliqués, vol.85, pp.17-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00091373

K. Ramdani, T. Takahashi, and M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations -application to lqr problems, Esaim : Cocv, vol.13, pp.503-527, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00140476

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions, SIAM Review, vol.20, pp.639-739, 1978.

V. I. Sedenko, On the uniqueness theorem for generalized solutions of initial-boundary problems for the marguerre-vlasov vibrations of shallows shells with clamped boundary conditions, Appl. Math. Optm, vol.39, pp.309-326, 1999.

J. A. Sethian, Level set methods : Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science, 1996.

B. K. Shivamoggi, Theoretical Fluid Dynamics, 1998.

J. Sanchez-hubert and E. Sanchez-palencia, Coques élastiques minces : propriétés asymptotiques, 1993.

J. Sokolowski and J. P. Zolésio, Introduction to shape optimization. Shape sensitivity analysis, vol.16, 1992.

J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization, SIAM J. Control Optim, vol.37, pp.1251-1272, 1999.

L. Tartar, Remarks on optimal design problems, in calculus of variations, homogenization and continuum mechanics, World Scientific, pp.279-296, 1994.

L. Tartar, An introduction to the homogenization method in optimal design, Lecture notes in Mathematics, vol.1740, pp.47-156, 2000.

L. N. Trefethen, Group velocity in finite difference schemes, SIAM Rev, vol.24, pp.113-136, 1982.

R. Triggiani, Regularity theory, exact controllability, and optimal quadratic cost problem for spherical shells with physical boundary controls, Control Cybernet, vol.25, pp.553-568, 1996.

L. R. Tcheugoué-tébou and E. Zuazua, Uniform exponential long time decay for the space semidiscretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math, vol.95, pp.563-598, 2003.

M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Computat. Methods. Appl. Mech. Engrg, vol.192, pp.227-246, 2003.

E. Zuazua, Exponential decay for the semilinear wave equation with localized damping. Communication in PDE, vol.15, pp.205-235, 1990.

E. Zuazua, Boundary observability for the finite difference space semi-discretizations of the 2-d wave equation in the square, J. Math. Pures Appl, vol.78, pp.523-563, 1999.

E. Zuazua, Propagation, observation, control and numerical approximations of waves approximated by finite difference methods, SIAM Review, vol.47, pp.197-243, 2005.

E. Zuazua, Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, pp.1389-1417, 2006.